
If you find this book to be useful to you, please consider making a small contribution to the author.

You can use Unglue.it to help to thank the creators for making Functional Programming Textbook free. The amount is
up to you.

Click here to thank the creators

https://unglue.it
https://unglue.it/work/400500/download/?offer_id=137&source=pdf

Functional Programming with F#

Yusuf M Motara

2019.1 Edition

CONTENTS

Notation and conventions 1
Whitespace conventions . 1

Setup 3
F# files . 3
F# interactive . 3

Introduction 5
Immutability . 5
Expressions . 5
Functions . 5
First-class functions . 5
Referential
transparency . 5
Purity . 5

Exercises 7

Basics 9
Operators . 9
Patterns . 9

Exercises 13

Functions 15
Curried functions . 16
Function types . 17
Operators . 17

Exercises 19

Tutorial 21
Extensions . 22

Match expressions 23
Mapping functions . 23

Exercises 25

Tutorial 27
Extensions . 28

Can you be helped? 29
Scepticalepsy . 29
Analogiculosis . 29
Functionalophobia . 29
Syntactic dyslexia . 29
Hypopractical psychosis . 30
Space dysmorphopsia . 30

Iteration 31
More efficient recursion . 31

Exercises 33

Tutorial 35
Square root . 35
Chocolate wrappers . 35

Basic data structures 37
Tuples and Records . 37
Discriminated unions . 38
Comparison . 39
“as” patterns . 40

Exercises 41

Tutorial 43
Commission of Sales . 43

Type theory 45
Type-safety . 45
Parametric polymorphism . 45
Type inference . 46
Type errors . 47
Generic composite types . 47

Exercises 49

Lists 51
Comparison . 52

Exercises 53

Useful functions 55
Strings . 55
Catastrophic errors . 55
Options and Results . 55
List operations . 55
Sequence functions . 57
Mathematical functions . 57

Exercises 59

Functional techniques 61
Higher-order functions . 61
Closures . 61

Exercises 63

Tutorial 65
Extensions . 67

Lambda calculus 69
Basics . 69
True and false . 69
Practical impact . 70

Answers 71
Page 7 . 71
Page 13 . 71
Page 19 . 72
Page 25 . 72
Page 33 . 73
Page 41 . 73
Page 49 . 74
Page 53 . 75

CONTENTS

Page 59 . 75
Page 63 . 76

CONTENTS

NOTATION AND CONVENTIONS

We will use the following notation in this textbook:

• keyword is text that must be written exactly as it is
on the page.

• pattern is replaced in actual code by a pattern (see
page 9).

•
:::::
ident is replaced in actual code by an identifier.

• type is replaced in actual code by a type.

• expression is replaced in actual code by an expres-
sion.

• ↓ indicates where a line can, optionally, be bro-
ken. To indicate that code on subsequent lines is
part of this line, it is indented.

• optional indicates a part of the syntax that is op-
tional.

Syntax is defined in a box like this:

SYNTAX: CONSTRUCT

Examples appear in a box like this:

Common misunderstandings that first-time func-
tional programmers have will appear like this:

DESCRIPTION

Important terms which should be remembered with
their meaning are written Jlike this.

WHITESPACE CONVENTIONS

Whitespace is significant in F#; in other words, the in-
dentation and spacing of code can affect its meaning.

Short expressions that only take up a single line are
usually left on that line.

fun x -> x + 10

Expressions which consist of multiple lines are
placed on a new line and indented, usually by 2-4
spaces.

fun x ->

let k = 21

k + x

Multiple-step single-line expressions are typically
broken up over multiple lines, with an operator being
used to start each line.

[3..200]

|> List.map (fun x -> x * 3)

|> List.filter (fun x -> x % 5 = 0)

|> List.length

More complex code tends to use slight variations on
the above conventions.

List.mapi (fun i (v,p) ->

let w = (v+p)*i

w,v*w

) |> List.filter (fun (_,n) -> n < 0)

|> List.fold (fun s (a,b) -> s+a+b) 4

Here we have an example that shows single-line ex-
pressions and multiple-line expressions in a multiple-
step single-line expression. Notice the fourth line,
where a small variation to the above conventions can
be seen. The code could just as easily have been
written as follows:
List.mapi (fun i (v,p) ->

let w = (v+p)*i

w,v*w

)

|> List.filter (fun (_,n) -> n < 0)

|> List.fold (fun s (a,b) -> s+a+b) 4

Always double-check to make sure that your code
is correctly indented.

2 NOTATION AND CONVENTIONS

SETUP

You can experiment with F# by using anything
from the command-line to an online editor; however,
for the purposes of this module, we’ll be using Vi-
sual Studio 2017 and the .Net Core Software Devel-
opment Kit (SDK). The free Community edition of Vi-
sual Studio 2017 should work perfectly. Visual Studio
2017 is not cross-platform, although F# and the .Net
Core SDK are. If you want a cross-platform editor,
there are many options; some suggest VS Code, but I
have found it to be much worse in terms of its Read-
Execute-Print Loop, as well as its code completion. If
you choose to not use Visual Studio 2017 and you run
into technical difficulties, you’re on your own! Instal-
lation of the necessary components may take upwards
of 2 hours, depending on machine speed and internet
connection speed.

F# FILES

You can create a new F# project using the command:

• dotnet new console -lang F# -n ProjName

If you are using Visual Studio 2017, I suggest that
you also create a solution file and add the project to it:

• dotnet new solution -n SolnName

• dotnet sln SolnName.sln add ProjPath

Once you are done, you can open the solution file in
Visual Studio. You should have some boilerplate code
in front of you.

// Learn more about F# at http://fsharp.org

open System⊙←− Your Code Goes Here
[<EntryPoint>]

let main argv =

printfn "Hello from F#!"

0 // return an integer exit code

The main function is what gets evaluated when the
program is compiled and run. Compilation, testing,
and running can be done using the dotnet task run-
ner. For now, don’t worry about this: we will not be
running code by compiling programs at first. Instead,
we will be using F# Interactive.

F# INTERACTIVE

You will find yourself writing many small, indepen-
dent functions and pieces of code in F#. One of the
best ways to test these out and to explore the language

is via F# Interactive, which is a Read-Execute-Print
Loop (REPL) environment that comes with F#. The
majority of the examples in this textbook can be typed
into F# Interactive so that you can play around with
them, so getting familiar with the environment will
make the content of this module much easier to learn.

You can launch F# Interactive from Visual Studio
via the Ctrl + Alt + F shortcut. If you’d like to use
the command prompt, the fsi (Windows) or fsharpi
(Linux/OSX) executable is what you’re looking for.

If the F# Interactive session gets messed up in any
way, you can reset it from Visual Studio by right-
clicking in the interactive window and choosing the
“Reset Interactive Session” option.

You can use F# Interactive in two ways, and you
can combine these ways as well.

INTERACTIVE EVALUATION

F# Interactive can be used as an interactive language
evaluator. Type in the full code that you want to evalu-
ate at the prompt, then indicate that the code entry is
complete by typing ;; and pressing Enter . The code
that you have typed in will be evaluated, and a result
will be printed.

> let simba = "Lion"

simba + " king"

;;

val simba : string = "Lion"

val it : string = "Lion king"

> simba;;

val it : string = "Lion"

This example shows you the interactive way to use
F# Interactive. Terminal output is displayed in bold.
“it”, in the output “val it : . . . ”, is what F# In-

teractive calls the final expression that it evaluates.

SEND TO INTERACTIVE

Highlight a section of code in your file and press Alt

+ Enter to send that code to F# Interactive for evalua-
tion. Any identifiers that are bound will be available
for use in the interactive session.

4 SETUP

INTRODUCTION

This textbook tries to teach you functional program-
ming, using F# as the language of instruction. F# is a
multi-paradigm functional-first language: this means
that it supports functional programming natively as
well as the “usual” constructs such as objects and
classes and interfaces and mutable variables and so
on, which you may be familiar with from imperative
programming. Since we are learning functional pro-
gramming, we will only be using the functional parts
of F# in this module.

There are many different functional languages such
as Swift, Ocaml, Haskell, Elm, and Erlang. Some of
these have strong typing, and others don’t. Some
of them have algebraic data types, and others don’t.
But all of them follow certain principles, and their
strengths and weaknesses are directly related to these
principles.

IMMUTABILITY

A Jvalue, once created, can never be altered.

EXPRESSIONS

All executable constructs are expressions.
An Jexpression is anything that, when evaluated,

generates a value. By contrast, a Jstatement does
not generate a value. Values may be used in place of
expressions and, when this is done, they evaluate to
themselves. There are no statements in a functional
language.

Note we have specified “executable constructs” be-
cause some code is non-executable. In this module
you will encounter non-executable code which de-
fines a data type, or links a value to an identifier, or
organizes code into different namespaces.

FUNCTIONS

A function is a value which accepts exactly one in-
put value and, when this is supplied, evaluates an ex-
pression to generate exactly one output value. The
Jdefinition and Japplication of a function are sep-
arate. Code within a function is only executed when
the function is applied.

FIRST -CLASS FUNCTIONS

A Jfunction can be used in any context that a value
can be used.

It can be created, it can be passed to another func-
tion, it can be given a name, it can be returned as the
result of an expression, it can be part of a data struc-
ture, and so on.

REFERENTIAL

TRANSPARENCY

An identifier, once it has been linked to a value, will
always refer to that value. An identifier can therefore
always be replaced by its value without changing the
meaning of the program.

IMMUTABILITY 6= REFERENTIAL TRANSPARENCY
Immutability means that a value can never be

changed.

Referential transparency means that the link
between an identifier and a value can never be
changed.

These two concepts are often confused by beginners.
Make sure that you understand the difference!

PURITY

A Jpure function must fulfill two conditions:

1. its output depends only on its input; and

2. it has no Jside-effects

There is a continuum of purity: a language can be
completely pure (such as Haskell or PureScript), or
mostly pure (such as Ocaml or F#). Completely pure
languages do not allow any impure functions to be
written, and mostly pure languages allow them but
discourage them.

DEPENDING ONLY ON INPUT

A function, when given an input, will execute some
instructions and generate an output value. Neither
the execution of those instructions nor the generation
of the output value can depend on anything other
than the input to the function.

A function is still pure if it doesn’t use the input.
However, in this case, the function must necessarily
generate a predetermined value, since it cannot possi-
bly depend on anything other than its input.

A function is still pure if it uses constant values
within it (such as true or 0.8). Similarly, a function re-
mains pure if it uses identifiers1 that exist in the envi-
ronment where it is defined. Since nothing can change
about these identifiers or the values that they refer to,
the situation is equivalent to using constant values.

As a guideline, ask yourself whether the function
can ever possibly return a different result when given
a particular input. If the answer is “yes”, then it must
depend on something other than the input, and it can-
not be pure. Common examples of such dependencies
are mutable global variables, random number gener-
ators, user input, countdown timers, files, and date/-
time lookups.

NO SIDE-EFFECTS

A side-effect is an observable interaction of the func-
tion with anything outside of the function. The substi-
tution of a generated value at a call site occurs after the
application of a function has been completed, and is
therefore not an interaction of the function with any-
thing outside of the function. The only way in which
the function should be able to affect anything at all is
by returning a value; all other interactions that affect
the external environment are considered to be side-
effects.

Common side-effects include: altering a mutable
external variable, writing data to a file, printing or
displaying something on the screen, and sending data
across a network.

WHY WOULD YOU PROGRAM LIKE THIS?
Programming would be so much easier if we could
change values, and write functions however we
wanted to! So why would we want to not do all
of that? There are two reasons.
Firstly, if we program functionally, then compli-

cated code becomes incredibly easy to reason about.
When you are reading a line of imperative code and
you see a variable, you have to always think to your-
self: “What will the value of this be now? When and
where was it last changed?”. If you program function-
ally, identifiers are referentially transparent and val-
ues are immutable, so you never need to think about
this when you are doing functional programming.
In fact, students who struggle with functional pro-
gramming often ask “What will the value be now?”
without realizing that the question doesn’t make any
sense. An identifier will always refer to the value it
was initially bound to!
Secondly, think of a complicated imperative pro-

gram. Perhaps some code in it looks like this:

SpecialObject a = N();

Whatever b = Mirror(a, N());

SpecialObject c = Combine(b, a);

1We assume, of course, that the identifiers are referen-
tially transparent, and that the linked values are immutable!

Wouldn’t it be great if we could take this code and
reduce it to a single line?

Combine(Mirror(N(), N()), N());

However, we can’t do that. What if N() changes
each time? What if Mirror changes something in
a, or affects the next call to N? Replacing variables
with initially-assigned values, or executing a function
more than once – even with the same arguments –
might change the meaning of the program!

In functional programming, none of these problems
occurs. We can always replace identifiers with their
values, just as we would in an algebraic equation, so
we can make our programs smaller and more efficient
very easily. In fact, we can go a step further: we
could calculate N() once, and we can use it three
times — and we are guaranteed that none of these
optimizations will ever change the meaning of the
program!

6 INTRODUCTION

EXERCISES

1. A friend shows you their code and says that a
particular value is immutable. What does this
mean?

2. What is the difference between an expression and
a statement?

3. What is a function?

4. What are the defining characteristics of a pure
function?

5. For each of the the following C# methods, deter-
mine whether the method is pure. Give a reason
for your answer.

(a) int Register(string t) {

return t.Length - 5;

}

(b) int Tristan(string t) {

Console.WriteLine("X: {0}", t);

return t.Length - 5;

}

(c) int Ark(int[] q) {

if (q==null || q.Length==0) {

return -1;

} else {

q[0]++;

return 1;

}

}

(d) int YesNo(int g, int v) {

while (g > 3) {

v += 4;

g--;

}

return g;

}

(e) bool Decide(DateTime d) {

if (d.Year > 944) return true;

return false;

}

6. If variables in a language are referentially transpar-
ent, what does that mean?

7. What is a first-class function?

8. What is the difference between referential trans-
parency and immutability?

9. Write down the word or phrase that means
“something that a function does in addition to gen-
erating an output value”.

8 INTRODUCTION

BASICS

Each value in the F# language has a type associated
with it. The basic types are int, float, bool, string ,
char , and unit.1 Unlike C#, F# does not implicitly
convert between types, even when it is “safe” to do
so. This means that an expression such as 3 + 4.0 is
illegal.

The unit type may be unfamiliar to you. Unit has
only one possible value: (). Unit values are equal to
other unit values.

WHAT’S THE POINT OF A “unit” TYPE?
Remember that a function must accept a single in-
put, and when it is given that input, it must generate
a single output. If it doesn’t do that, it isn’t a func-
tion ... and if it does do that, then it is a function,
even if it might not look like a function! There’s
no such thing as a “void method” in functional pro-
gramming: all functions return a value.
However, when a function is called only for its side-

effect, we want to return a value that cannot possibly
have an effect on the program’s working. If we re-
turn an int or a bool or any other type, an evil
programmer may decide to use that value to affect
the output of their function, and we would thus be
making it easy to introduce even more side-effects
into our program! We want to avoid that, so we
return (): a unit value which gives no indication
of success or failure, and which cannot be used to
change control flow.
A second reason to use unit is as a function in-

put. Sometimes we want to define a function, but
delay its application. The function does not need any
additional input to generate its result, but we must
nevertheless give it an input to apply it. The only
sensible input value to give is (), since this is the
only type of input which the function can depend on
without causing the control flow of the function to
be affected in any way.

A true value is considered to be greater than a false

value.
Types are Jinferred from their context. This means

that F# will attempt to prove — not guess! — what the
type of an identifier must be. For now, you can under-
stand this to mean that you don’t need to write down
the types of identifiers; F# will do that for you. Types
and typing are covered in more detail on page 45.

A single-line comment is started with the // charac-
ters. Multi-line comments are started with (*, ended
with *), and may be nested.

Identifiers follow C#-style restrictions2, but in ad-
dition they must usually also start with a lowercase

1Other basic types such as byte exist, but won’t be used
here.

2For example, it cannot start with a digit

letter. Identifiers in F# can include single-quotes (’).
An identifier can also be any text enclosed in double-
backticks (e.g. ‘‘this is an identifier!‘‘).

OPERATORS

Arithmetic operators are the usual familiar ones: +, -,
*, /, and %.

Logical operators are && and ||. Instead of a “not”
operator, there is a built-in function called not which
inverts any boolean value that it is given.

Some comparison operators are familiar: <, >, <=,
and >=. The “is equal to” operator is =; note the single
equal sign! The “is not equal to” operator is <>.

The + operator can also be used to concatenate
strings; however, the sprintf function (introduced on
page 55) is a far superior way of doing this.

F# also includes some operators that are useful for
joining functions together, and for manipulating lists.
These will be introduced in later chapters.

Brackets in F#, just as in algebra, are only used to
separate logical groups or clarify the order in which
operations are performed. They have no special
meaning other than this.

PATTERNS

A Jpattern expresses a possible shape for a value.
JPattern-matching is the process of looking into
a value, seeing if it matches a specified pattern,
and then Jbinding parts of the value to any spec-
ified identifiers. Binding is the only way in which
values can be linked to names, and it is there-
fore impossible for a name to exist without a
value. The process of looking into a value is called
Jstructural decomposition. If any part of the value
does not match the pattern, then pattern-matching
fails — and, consequently, no binding occurs.

Pay careful attention to syntax in this text: wherever
you see code formatted like this, that is a place where
pattern-matching and binding can be used. There are
four important differences between “assignment” and
pattern-matching & binding:

1. Assignment cannot fail. Pattern-matching can.

2. Assignment must assign a value to at least one
variable. Pattern-matching does not necessarily
result in any identifiers being bound.

3. Assignment always makes a copy: for a “value
type”, a value is copied, and for a “refer-
ence type”/“pointer type”, a reference/pointer
is copied. Binding never causes any copies to

be made: a bound identifier is just a name for a
value.

4. Re-assignment to an existing variable changes the
value that is linked to that variable name. Re-
binding a name does not affect any existing bind-
ing. Instead, the existing name is Jshadowed by
the new name. If the new name is ever removed
from consideration — for example, if it passes out
of scope — then the older name is no longer shad-
owed, and it becomes accessible again.

Different patterns will be introduced throughout
this textbook, and patterns can be nested arbitrar-
ily. Pattern-matching is a much more powerful and
general mechanism than assignment, and is used
very extensively throughout F#; you must develop
a good understanding of it. One way of using pat-
terns to bind values in our expressions is by using a
Jlet binding.

SYNTAX: let BINDING
let x = ↓expr0 in ↓expr1

This syntax evaluates expr0 and pattern-matches the
resulting value against the pattern x. Any identifiers
that are bound to values during the pattern-match can
be used in expr1 . Identifiers must be defined before
they are used in expressions. Bound identifiers only
begin to exist after the in part of the let binding3. let
bindings can be nested to any depth.

let alex = "Lion" in alex + " king"

The value of this expression is “Lion king”. The
bound value is limited in scope to the expression that
it is used in.

THE VALUE OF FUNCTIONS
Always remember that identifiers are bound to val-
ues, not expressions. However, you have also been
told that functions, which evaluate an expression to
generate a value, are values. How does this all make
sense?
Keep this in mind: when we define a function, we

are creating a value. This created value can be bound
to an identifier. The code within the function is not
executed during this process.
It is only later on, when we apply that function,

that the code within the function will be executed.
This “trick” lets us use functions as values and ap-

ply them to generate values. The difference between
definition and application is very important, so be
sure that you understand it!

3Later on, you will learn about the rec keyword which lifts
this restriction.

We typically use a shorter syntax to mean almost
the same thing as shown in the previous syntax box:

SYNTAX: SIMPLER let BINDING
let x = ↓expr0
expr1

Now that we have a way to see some code that can
be used for pattern-matching, it’s time to turn our at-
tention to patterns themselves. For now, there are four
basic patterns that you should know about.

SYNTAX: IDENTIFIER PATTERN
x

An Jidentifier pattern4 matches any value and
binds it to the supplied identifier. It always succeeds.
The identifier must be a valid F# identifier.

let test = "Hi there!"

let ‘‘this is fun...‘‘ = 732

We typically use an identifier pattern to extract a
particular part of a value — such as a single element
of a list — from a larger value, so that we can use that
part in a future calculation.

let w = 5 in

let x = 7 in

let y = w - x in

let w = x in w + y

What happens when this is evaluated?

1. The value 5 matches the pattern and is bound
to the identifier w.

2. 7 matches the pattern and is bound to x.

3. The expression w - x is evaluated, resulting in
the value -2.

4. -2 matches the pattern and is bound to y.

5. The expression x is evaluated, resulting in the
value 7.

6. 7 matches the pattern and is bound to w. The
binding in step (1) continues to exist and is
unchanged!

7. The expression w + y is evaluated, resulting in
the value 5.

4Sometimes called a Jvariable pattern

10 BASICS

A DETAIL OF SHADOWING
In F#, an identifier at the top level (i.e. the outer-
most scope) of a file or module cannot be shadowed
at that level of scoping. You will probably never run
into this exception to the rule in a real-world func-
tional program.

Note that, in some functional languages, there is no
obligation to execute an expression if the language can
prove that the result of an expression will not affect
the semantics of the program.

let w = 5

let x = 7

let y = w - x

let w = x

w + y

This example is semantically equivalent to the pre-
vious example, but written using a shorter syntax.

F# INTERACTIVE
The above example doesn’t work if you type it into
F# Interactive in one go. However, it does work if
you type it into F# Interactive and end each line with
;;. This occurs because F# Interactive evaluates
“blocks” of code in a single top-level environment,
where duplicate values are not allowed. The code
itself is valid and correct.

SYNTAX: WILDCARD PATTERN
_

The Jwildcard pattern is a single underscore. It
matches any value; it does not bind any identifier; and
it always succeeds.

let _ = 43.2

This pattern-match will succeed. No identifiers will
be bound.

We typically use a wildcard pattern to match and
ignore parts of a value that we don’t want to use later
on. For example, we can use an identifier pattern to-
gether with a wildcard pattern to bind the first ele-
ment of a list to a name, and ignore the rest of the list.

SYNTAX: CONSTANT PATTERN
Any literal value

A constant pattern is a literal value such as a
numeric, string, boolean, or character literal. 5,
"Kind sir", false, 45.109, and ’p’ are all constant pat-
terns. A constant pattern will only succeed if the value

exactly matches the specified literal. The type of the
value must be the same as that specified by the con-
stant pattern.

let ’k’ = ’k’

let 10 = 1 + 2 + 3 + 4

let "batman" = "joker"

The first two of these pattern-matches will succeed.
The last pattern-match will compile, but will fail at
runtime if it ever needs to be executed. Execution
would result in a MatchFailureException, which is
what F# uses to indicate that a pattern-match has
failed.

Since the type of the value must be the same as
the type specified by the constant pattern, code such
as let 7 = ’p’ is invalid.

We typically use a constant pattern when we want
to answer very specific questions and make deci-
sions5. For example,

• We can answer “is the list empty?” by checking
whether the list matches a constant pattern for an
empty list

• We can answer “is the return value -1?” by trying
to pattern-match against the -1 pattern

• We can answer “did the operation succeed?” by
matching against the constants true and false

PATTERNS 6= EXPRESSIONS
A pattern is not an expression, and an expression is
not a pattern. They can look the same, but they
mean very different things. For example:
let x = "ndi"

let y = x + "funda"

On the first line of this code, x is used as a pattern.
This means that it will be pattern-matched and, if
the pattern-match succeeds, it will be bound to a
value. On the second line of this code, x is used as
an expression. This means that it will be evaluated
and will generate a value. If you do not understand
the difference, you will end up writing incorrect and
nonsensical code like let x + "funda" = "ndifunda",
and you won’t understand why it doesn’t compile!

Read the Syntax sections very carefully and note
where a pattern is allowed and where an expression
is allowed. This will allow you to interpret and write
F# code correctly.

SYNTAX: OR PATTERN
pat0 | pat1 | · · · | patn

5You’ll have to wait a while to see how we use pattern-
matching to make decisions, and a discussion of lists will
occur even later.

BASICS 11

An or-pattern matches if any of the patterns, sep-
arated by |, match. Or-patterns are sometimes en-
closed by brackets to separate them from surrounding
syntax.

let 3 | 4 = 3

let 5 | 6 | 7 = 1 + 2 + 3

let m = "luthor"

let "joker" | "riddler" = m

The first two of these pattern-matches will succeed.
The third pattern-match is an identifier pattern and
will succeed. The last pattern-match will compile,
but will fail at runtime if it ever needs to be executed.

We typically use an or-pattern when different val-
ues should be treated in the same way.

12 BASICS

EXERCISES

1. List three differences between pattern-matching /
binding and assignment.

2. In C#, I would write a==b to test for equality be-
tween a and b. What would I write in F#?

3. Rewrite the following code so that it does not use
the in keyword. For example,

let test = 11 in test-2

could be rewritten as

let test = 11

test-2

Preserve all the bindings in your answers, even if
they are not used.

(a) let a = "hi" in "zoot"

(b) let b = "zoo" in "zooty" + b

(c) let c = 7.5 in

let d = 34 in

c + 0.2

(d) let e = 8 in

let f = e in

let e = 20 in

let g = 3 in e+f+g

4. What is the difference between pattern-matching
and binding?

5. Which of the following are valid F# identifiers?
Give a reason for each answer.

(a) _

(b) a

(c) a’ight

(d) "amp and such"

(e) ‘‘amp and such‘‘

(f) @called

(g) let

(h) ‘‘ _‘‘

6. Explain the difference between shadowing and up-
dating (or mutating) a symbol.

7. A student writes this code:

let r = System.Random ()

let v1 = r.Next ()

let v2 = v1

The student is surprised to see that v1 is always
the same as v2. Shouldn’t they be different val-
ues from the random number generator? Explain
why the values are the same.

8. Examine the following patterns and write down
C, W, I, or O if the pattern is a constant, wildcard,
identifier/variable, or or-pattern respectively.

(a) 213

(b) q

(c) q|q

(d) ’q’

(e) ""

(f) _

(g) false

(h) _ | 5

(i) practically

(j) not_really

(k) "Not | really"

(l) _true

(m) 3|2

(n) 43.50

9. Which of the patterns below are valid patterns? If
a pattern is valid, write a 3 and identify the kind
of pattern that it is. If a pattern is invalid, write a
7 and explain what is wrong with it.

(a) ’c’|’k’

(b) 1.0|2.0

(c) 1.0|2.0|3

(d) m|p

(e) kappa-delta

(f) O’neill

(g) let

(h) ’cause

(i) _|v

(j) ‘‘’f’|blah|_‘‘

(k) __

14 BASICS

FUNCTIONS

A function is a value which accepts exactly one in-
put value and, when this is supplied, evaluates an ex-
pression to generate exactly one output value. The
Jdefinition and Japplication of a function are sep-
arate. Code within a function is only executed when
the function is applied.1

SYNTAX: FUNCTION DEFINITION
fun x -> ↓expr

It is extremely important to understand that a func-
tion is just a value, and function definition is how we
create a function value.

The x is a pattern. The expr is the function body;
it necessarily generates a value when an input is pro-
vided, which is the result (or “return value”) of the
function. There is no “return statement” in F#; the last
value to be generated by the function is the returned
value.

A definition should always be read as
fun x -> (expr): imagine that there are implicit
brackets that group the expr part together and sep-
arate it from the x. This is always the case, even if
the actual expression is many lines long, or a single
continuous long line of logic.

When a function is not bound to a name, we call it
a Jlambda function.

let qwan = fun k -> k * 4

In this example we have bound a function to a name.

We say that we Jinvoke, Jcall, Jevaluate, or
Japply a function; these terms are largely synony-
mous and all of them mean “provide an input to the
function, thereby obtaining an output”. A function’s
body is not executed until the function is applied.

A function’s body is evaluated in the context of
the code that the function is defined in (i.e. in its
Jlexical scope), not the scope that it is applied in. This
fact is very important for understanding some of the
techniques, such as closures, which are discussed later
on.

SYNTAX: FUNCTION APPLICATION
function input

We apply a function by giving it its input, separated
by a space. Function application causes the input to
be bound to the input-pattern of the function before

1This is exactly the same definition of a function that you
saw on page 5.

the body of the function is executed and a value is
consequently generated.

(fun p -> p + 3) 7

Here we define a function and then immediately apply
it; note that the brackets exist only to show where
the function begins and ends. During evaluation of
this function, p is bound to 7. Due to referential
transparency, p can immediately be replaced at all
places by 7. This simplifies the expression to 7+3,
which is evaluated and generates the value 10.

The technique of substituting a function input with
a value, resulting in a simpler expression, is called
β-reduction (pronounced “beta-reduction”). In fact,
function application in a functional language is just
repeated β-reduction!

Function application is always greedy2. A function
will always grab the first input that it’s given, use it,
and replace itself with the resulting β-reduced value.
The . operator, which you will read about on page 38,
is one of the very few parts of the language that is
“greedier” (i.e. has higher precedence) than function
application.

let rex = fun ny -> ny + 3

rex 7

This is exactly equivalent to the previous example; if
you use referential transparency to replace rex with
its value, you will obtain the code of the previous
example. Having bound the function to a name, we
apply it and the value 10 is generated. It is unam-
biguously clear where the function begins and ends,
and brackets are therefore not needed here.

KEEP IT SIMPLE!
Can you write a F# function which takes an input
and subtracts 10 from it?

YES — you can! Following the instructions and
examples that you’ve read so far, you will not only
be able to create the function, you will also be able
to apply it. Think about what that function will look
like, and then read the next line.
fun v -> v - 10

Did your function look like that? Did you actually
try to write it? If so, congratulations: many students
don’t. After years of programming in an imperative
language, most students hesitate to try writing their
own functions. This is because all of the languages
that they’ve used up to this point are complicated:

2Another way of phrasing it is that function application
has a very high precedence. For a full precedence table, go
to https://goo.gl/pFdKNs.

https://goo.gl/pFdKNs

they require you to keep state in your head, they
have different “kinds” of methods/functions, the val-
ues are split into value-types and reference-types and
addresses, some things are aliased, and so on. In a
language like C#, similar code would be longer and
more complicated:
int SomeName(int k) {

return k - 10;

}

Programmers coming from an imperative back-
ground usually think “there must be more to write!”,
because things are complicated when you program
imperatively. But functional programming is not like
that. There is only one kind of function; there are no
“aliases” or different kinds of values; there’s no neces-
sity to put in semicolons or braces or a return state-
ment or explicit type-names or names for functions;
and identifiers are referentially transparent. When
programming in a functional language, keep it sim-
ple, and you’ll be surprised at how often it just works!

Binding a name to a function is such a common
thing that there is a convenient syntax for it.

SYNTAX: FUNCTION DEFINITION & BINDING
let

:::::
ident pat = expr

let increase n = n+16

let t = increase 8 / 4

The increase function is applied before the division,
so the identifier t is bound to the value 6. To evalu-
ate the 8 / 4 before applying the function, one would
have to write increase (8 / 4).

CURRIED FUNCTIONS

A function cannot accept more than one input. How-
ever, functions are first-class, and function values can
therefore be returned from a function. We can use
these facts to simulate n-input functions, using a tech-
nique called Jcurrying3.

SYNTAX: CURRYING
fun i0 -> fun i1 -> · · · -> fun in -> expr

A curried function simulates an n-input function by

3The technique is named after the mathematician Haskell
Curry, not after the delicious food. Interestingly, Curry re-
discovered the technique; it was initially discovered by Moses
Schönfinkel, and possibly earlier by Friedrich Frege. We will
nevertheless continue to call it “currying”, not “schönfinkel-
ing” or “fregeing”.

returning additional functions.

(fun z -> fun e -> e*z+1) 9 5

Here we have a “2-input” function which is actually
two 1-input functions. We seem to be providing our
“2-input” function with two inputs, though what we
are really doing is providing one input, in turn, to
each of the functions. Remember that this should
be read as: (fun z -> (fun e -> (e*z+1))) 9 5, and
that function application is greedy – so the 9 will be
grabbed immediately. A single β-reduction results in
(fun e -> (e*9+1)) 5. The next β-reduction results
in 5*9+1, which evaluates to 46.

Currying is such a common technique that there is
a convenient syntax for it.

SYNTAX: CONVENIENT CURRYING
fun i0 i1 · · · in -> expr

(fun z e -> e*z+1) 9 5

This is exactly equivalent to the previous example;
it’s just written in a shorter way.

In fact, binding a name to a curried function is so
common that there is a convenient syntax for that, too!

SYNTAX: BINDING & CURRYING
let

:::::
ident i1 · · · in = expr

let em i nem = i/nem

The above line of code is exactly equivalent to these
lines:

• let em = fun i nem -> i/nem

• let em = fun i -> fun nem -> i/nem

In all of these, the identifier em is bound to a curried
“2-input” function.

SYNTACTIC SUGAR
The “binding & currying” and “convenient currying”
syntaxes are Jsyntactic sugar: a way of writing ex-
actly the same thing using a more convenient (and
usually shorter) syntax. You may have already en-
countered other examples of syntactic sugar in your
Computer Science journey; for example, many lan-
guages allow you to say count += 7, which is syn-
tactic sugar for count = count + 7. They both mean
exactly the same thing, but one way of writing it is
shorter. If you don’t want to use the syntactic sugar,
or if you want to spend more time writing out the

16 FUNCTIONS

full form so that you understand currying a bit bet-
ter, don’t use the sugared syntax ! Stick to the basic
forms. They mean exactly the same thing.
If you are struggling to see what some sugared

code does, de-sugar it by getting some paper out
and translating it into a more expanded form. It will
only take 5-10 seconds, and it will often help you to
understand exactly what’s going on. Staring at the
screen or page for 40 seconds and trying to do the
same thing mentally will just waste your time! As
you get more familiar with the syntax, you’ll need to
do this less and less often, and with enough practice
you’ll be able to switch between the syntaxes effort-
lessly.

FUNCTION TYPES

All functions are values, and all values have types.
Therefore, all functions have a type. As you know,
a function is anything that takes an input and, when
this input is provided, evaluates code to generate an
output. The type of a function can therefore be speci-
fied entirely in terms of the type of the input and the
type of the output. We use the following syntax to
write a function type:

SYNTAX: FUNCTION TYPE
tin -> tout

tin is the type of the input, and tout is the type
of the output. Remember that a function can only
take one input and generate one output. If it ap-
pears to take more than one input, then it is actually
a curried function: a function which returns a func-
tion value. This means that the type of a curried func-
tion such as t0 -> t1 -> t2 should be understood as
t0 -> (t1 -> t2). For simplicity and convenience,
we often write a curried function type without the
brackets.

OPERATORS

It often happens that we wish to apply one function,
then use another function on the result, then use an-
other function on that result, and so on. If we have
initial data d and functions f, g, and h to be applied in
order, we might achieve this as follows:

h (g (f d))

Not only is this annoying to type, but it makes the
order of operations more difficult to see. The first
function to be applied is f, but this is the most deeply-
nested function — and, therefore, the last to be read

during a left-to-right scan of the code. Good use
of built-in operators, most of which are available in
most functional languages, can make code much more
readable and understandable.

PIPE OPERATOR

The Jpipe operator |>, sometimes called Jpipe-to,
accepts a value on the left and a function on the right,
and applies the function to the value. Instead of
h (g (f d)), this allows us to write d |> f |> g |> h

— and, written like this, we can clearly see the ex-
ecution of each function in-order from left to right.
The pipe operator allows us to build a “pipeline” of
functions, each one building on the previous one, that
takes in data on the left and spits out a result on the
right. When reading the code, we vocalise this as “d
pipe-to f pipe-to g ...”.

COMPOSE OPERATOR

The Jcomposition operator >>, sometimes called
Jcompose, “glues together” two functions to form a
new function4. Instead of h (g (f d)), this allows us
to write

let z = f >> g >> h

z d

For any two functions a and b which you want to
compose as a >> b, the output type of a must be us-
able as the input type of b. The composed function’s
input type will be a’s input type, and its output type
will be b’s output type.

“COMPOSITION SOUNDS WEIRD!”
While you might not use composition as much in your
earlier functional programming attempts, it becomes
critically important for understanding and using the
vast majority of advanced functional programming
techniques — including “monadic” techniques that
you may discover online. Composition allows a pro-
grammer to split functionality into small and simple
sections, while having the ability to join these sec-
tions together to form a much more powerful and
complex entitya. It can also help you to reuse func-
tions and develop exceptionally elegant and concise
code, so search for opportunities to use composition.

ahttp://bit.ly/2SukqAU

OTHER OPERATORS

Other interesting operators are:

4If you know a bit of mathematics, you might recognize
this as the composition of two functions — hence the name
of the operator.

FUNCTIONS 17

http://bit.ly/2SukqAU

• Backwards-pipe <|:

let (<|) f x = f x

This is mostly used to avoid using brackets. For
example, g (f d) could be written as g <| f d in-
stead.

• Backwards-compose <<:

let (<<) g f = fun x -> g (f x)

OPERATOR MADNESS
Consider the expression a / b, and think about what
the operator, /, does. It takes two inputs — one
on each side — and when it is evaluated, it uses
them to generate a result. Taking inputs and using
them to generate a result is not so different from
what a function does... and, in fact, operators in
functional languages are often simply functions in
disguise! For convenience, the language allows you
to use the operator after its first argument; this
is called Jinfix notation. If you wanted to use it
in the Jprefix notation, i.e. before its arguments,
you could do that by enclosing it in round brackets.
For example, 23 * 45 can be equivalently written as
(*) 23 45!
You might want to use prefix notation for an oper-

ator if you want to only specify one of the operands.
If you use infix notation, you have to specify both.

18 FUNCTIONS

EXERCISES

1. Briefly define β-reduction.

2. β-reduce the following expressions:

(a) (fun a -> a + " killer") "hunter2"

(b) (fun k -> fun r -> r > k) 16

(c) (fun k ->

let p = k-5

let r = fun t -> p/t

r

) 25 10

(d) let n k p = (k * 3) + p

let t s = n 2 s

let r v =

fun () -> v + (t 3 - t 1)

r 10

(e) let f x = x 3.0

let g k = k + f (fun q -> q - 1.5)

let t = f (fun p -> p + g p)

(f) let k = 15

let z = fun p -> p - 10

let b = fun r -> z (r + 2)

let t = b k

(g) let k p z = z p

let t = k 10 (fun r -> r+9)

(h) let f cat b = b ("see " + cat)

let t h = f h (fun k -> "I " + k)

(i) let f cat b = b ("see " + cat)

let t h = f "dog" h

3. Write down the type of the following functions:

(a) fun p -> "quiz" + p

(b) fun p -> p + 600

(c) fun p -> fun r -> r-p

(d) fun p r -> p-r

(e) fun 8 -> 25.13

(f) fun status -> fun () -> status/2

(g) fun i s -> s () - 10 * i

4. let zoq fot pik = fot/pik can be rewritten in two
alternative and semantically-equivalent forms,
without altering the body of the function at all:

• let zoq = fun fot pik -> fot/pik

• let zoq = fun fot -> fun pik -> fot/pik

Rewrite let k = fun m -> fun t -> t*3 in two dif-
ferent forms.

5. Define the following terms:

(a) Prefix notation
(b) Currying
(c) Lambda function

20 FUNCTIONS

TUTORIAL

In this tutorial, we will use functions to create a sim-
ple unit converter. Most of the world uses metric (or
“SI”) units of measurement such as kilograms, meters,
and degrees Celsius. However, there are still a few
places that use “US customary” units such as pounds,
feet, and degrees Fahrenheit. Our converter should be
able to convert between customary units and SI units.

You might be unfamiliar with US customary units,
so let’s go over what you’ll need to know:

• 1 inch is 25.4 millimeters. There are 12 inches in
a foot. There are 3 feet in a yard. There are 1760
yards in a mile.

• 1 pound is 453.59237 grams. 1 ounce is 1
16 of a

pound. There are 2000 pounds in a short ton.

Amusingly, one of the reasons that people in the
United States refuse to use the SI system is because
they find the customary units to be “easier”!

1. Create a new F# console application called
UnitConverter, with a solution file to go with it.
Open the solution file in Visual Studio 2017.

2. In the code file (which ends with .fs), above the
main method, type:

let inchToMillimeter v = v * 25.4

Select this line and run it through F# Interactive
(using Alt + Enter), to make sure that F# Interac-
tive integration is working. You should see text
saying val inchToMillimeter : v:float -> float.

In the F# Interactive window, you should be able
to write the expression inchToMillimeter 7.5 —
remember to end the expression with a ;; — and
get the result of 190.5. Make sure that you can do
this.

3. Below the inchToMillimeter line, let’s write a func-
tion to convert from feet to inches. There are 12
inches in a foot, so

let footToInch x = x * 12.0

Select all the lines you have typed and send them
down to F# Interactive. Test out footToInch.

4. Let’s put in some other length conversions.

let yardToFoot v = v * 3.0

let mileToYard mile = mile * 1760.0

Send them down to F# Interactive. We can now
convert from feet to millimeters by evaluating
this expression in F# Interactive:

footToInch 6.0 |> inchToMillimeter

Note what the |> does: it takes the output of
the expression on the left (i.e. footToInch 6), and
uses it as the input of the function on the right

inchToMillimeter. That gives us a figure of 1828.8

– so we now know that someone who is “six feet
tall” is about 1.8 meters tall.

5. We might want the output to be meters rather
than millimeters, though. How do we convert
millimeters to meters? We divide by 1000, of
course — or, equivalently, we can multiply by
0.001. Let’s make a function to multiply an input
by 0.001.

let divBy1000 = (*) 0.001

Remember that the multiplication operator
(*) uses currying to accept two inputs, and
(when used with float values) has the type
float -> float -> float. Here, we have
given it a single input. It accepts that input and
gives us the output, which is a float -> float.

Send this one down to F# Interactive and see
what it looks like. You should see it as a
float -> float function.

6. Let’s use that divBy1000 function to convert mil-
limeters to meters, and meters to kilometers.
Write the following functions after divBy1000:

let millimeterToMeter n = divBy1000 n

let meterToKilometer = millimeterToMeter

let millimeterToKilometer =

divBy1000 >> divBy1000

The first function here is quite easy to under-
stand. The second and third might be a bit more
confusing, so let’s talk about them.

To convert a meter to a kilometer, you just di-
vide by 1000. That’s exactly what happens in
millimeterToMeter — and since a name is exactly
equivalent to the value bound to it, we can sim-
ply bind meterToKilometer directly to a function
which performs the needed task.

In the third function, remember that the >> op-
erator will compose two functions: it “glues” the
functions together to make a more complicated
function which takes an input acceptable to the
first function, and returns an output specified by
the second function. Our millimeterToKilometer

will therefore take in a float input, as desired
by the first function divBy1000, and return a
float output, as generated by the second function
divBy1000.

Send these down to F# Interactive and play
around with them. Do they work as expected?

7. We can convert miles to kilometers as well! Just
write

1024.0 |> mileToYard |> yardToFoot

|> footToInch |> inchToMillimeter

|> millimeterToKilometer

This requires a lot of typing, though. So let’s
some convenient functions to do some useful
conversions for us. Make sure you put these
functions below the other functions you’ve writ-
ten.

let inchToMeter =

inchToMillimeter >> millimeterToMeter

let footToMeter = footToInch >> inchToMeter

let yardToMeter = yardToFoot >> footToMeter

let yardToKilometer =

yardToMeter >> meterToKilometer

let mileToKilometer =

mileToYard >> yardToKilometer

Send it all down to F# Interactive and you’ll be
able to evaluate mileToKilometer 1024.0 there and
discover that it’s 1647.968256 kilometers.

It’s important to notice something at this point:
for the last few steps, we haven’t actually done
anything other than compose together existing
functions. We last did any “real” conversion
work in step 4. Once we were able to do the
conversions between basic customary units, ev-
erything that we’ve done has just been gluing to-
gether functions to make larger functions — and
it all works! In fact, if you want to change the
system to use UK imperial units instead of US
customary units, all you’d need to do is change
those basic functions, and functions like “mile-
ToKilometer” would require no changes whatso-
ever. Now that’s a great way to reuse code!

EXTENSIONS

1. How many ways can you find to write each of the
functions, such that the function type remains the
same?

2. You have enough information to do mass conver-
sions using pound, ounce, and short ton. Add in
functions to do these conversions.

3. What about converting the other way, from met-
ric to customary units? Can you write functions
to do those?

22 TUTORIAL

MATCH EXPRESSIONS

A Jmatch expression is used to select between al-
ternatives1.

SYNTAX: MATCH EXPRESSION
match expr with↓
| pat0 -> ↓expr0↓
| pat1 -> ↓expr1↓
...
| patn -> ↓exprn

The value generated by expr is pattern-matched
against each of the patterns pat0 through pat1 , starting
from the topmost pattern and continuing on towards
the last pattern. If no pattern matches the value, then
a MatchFailureException is thrown.

Let us assume that the first pattern to match is patm .
The expression exprm is then evaluated, and the result
of this expression is the result of the match expres-
sion. Any identifiers which were bound in patm may
be used within the scope of exprm .

Each branch of the match expression must result in
the same type of value. For example, if expr0 evalu-
ates to an integer, then expr1..n must also evaluate to
integers.

match 5+8 with

| 4 -> "hi"

| v -> "yes"

| 13 -> "zip"

| _ -> "roy"

The expression is evaluated, resulting in the value
13. Then the constant pattern 4 is checked against
this value. The match fails. The identifier pattern
v is checked. It succeeds and binds v to the value
13. The corresponding expression is evaluated and
the result of the match expression is "yes". The re-
maining patterns in the match expression are skipped.
Note that every branch of the match expression will
evaluate to a string.

I WANT MY IF-THEN STATEMENT BACK!
How can you use a match expression to test a con-
dition, and then execute some code, just like an if-
then statement would do? It’s easier than you might
think!
let maxValue a b =

match a > b with

| true -> a

1F# also supports an if statement and when guards; we
won’t be using these.

| false -> b

This code finds the maximum of two values. The
trick that it uses is simple: evaluate the boolean
expression and match the result using the constant
patterns true and false. You can use similar tricks
throughout your code to do if-then tests, but be
warned: some things in F# cannot easily be phrased
as if-then tests, so youmust learn how to use pattern-
matching in general!

MATCH EXPRESSIONS 6= SWITCH STATEMENTS!
A match expression checks whether the value of an
evaluated expression matches a pattern. A switch
statement checks whether a value is equal to another
value. These are not the same thing (and, in fact,
the F# language has no “switch statement”). First-
time functional programmers tend to write code like
this:

let a = 25

let b = 34

let c =

match a with

| b -> "Same!"

| _ -> "Different!"

The programmer is trying to compare the values
of a and b, but that’s not what this code does. The
bold line above attempts to match the value 25 to the
identifier pattern b. This pattern-match succeeds, b
is bound to 25 (which shadows the earlier binding
of b), the expression "Same!" is evaluated, and the
resulting value is the value of the match expression.

MAPPING FUNCTIONS

Later on, you may want to write short functions that
simply map their exact input to a particular output.
Such a function might look like this:

fun v ->

match v with

| 0 -> 0

| n -> 65/n

The functions for doing this always have the follow-
ing form:

fun pat ->

match pat with

| p0 -> expr0

...

| pn -> exprn

F# provides syntactic sugar for creating such func-
tions.

SYNTAX: MAPPING FUNCTIONS
function ↓| p0 -> expr0 ↓| · · · ↓| pn -> exprn

function 0 -> 0 | n -> 65/n

You can also, of course, link such a function to a
name very easily. Such code is, by convention, for-
matted in a slightly different way.

let divvy = function

| 0 -> 0

| n -> 65/n

WHEN SHOULD I USE A SUGARED MAPPING FUNC-
TION?
Later on, when you learn about discriminated unions
(page 38), you’ll find these small mapping functions
to be very useful. For now, however, they might not
look useful at all! In fact, here are two things that
are difficult or impossible to do with these kinds of
mapping functions:

• You can’t evaluate an expression and pattern-
match against the resulting value.

• If you are pattern-matching using an or-pattern
of constant patterns, it can be difficult to figure
out exactly which value was the function input.

24 MATCH EXPRESSIONS

EXERCISES

1. A friend runs the following code and is con-
vinced that F# is executing code incorrectly.

let x = 5

let y = 8

let z =

match x with

| y -> y+1

| x -> 12

(a) The value of z is 6. Explain why.

(b) In the match expression, x could be replaced
by _. Explain why a good programmer
would do this.

(c) Rewrite the match expression to return y+1

if x is equal to y, and to return 12 otherwise.

2. Consider the following code:

let "hazmat" =

match 901 with

| 201 -> "wut"

| kray -> "lol"

| 901 -> "hazmat"

(a) Circle every pattern-match that fails.

(b) Underline every pattern-match that is not
executed.

(c) Write down the result of the match expres-
sion.

3. Consider the following code:

let t = 0.8

let r =

match t/2.0 with

| 0.0 -> 6.5

| t -> t

let v = t + r

(a) What is the value of v?

(b) What is the value of r?

(c) Will this code compile if you wrote t/2 in-
stead of t/2.0? Why or why not?

(d) Will this code compile if you wrote 0 as your
constant pattern instead of 0.0? Why or why
not?

4. Consider the following code:

let roll = 4

match roll with

| 2 | 4 | 6 -> "evens"

| 1 | 3 | 5 -> "odds"

(a) Write down the result of the match expres-
sion.

(b) Which numbers could you bind roll to if
you wanted to obtain the other result?

(c) What happens if someone binds roll to 24?

5. Consider the following function.

(fun b ->

match b%2 with

| 0 -> "Steven"

| 1 -> "Codd"

) 61

(a) β-reduce the function.

(b) Can you rewrite the function using mapping
function syntax? If so, do it. If not, explain
why not.

26 MATCH EXPRESSIONS

TUTORIAL

In this tutorial, we will create a program that takes
in a number and prints out that number in words. For
example, if given the number 7716, it should print out
“seven thousand seven hundred and sixteen”. The in-
put number must be in the range [-9999, 9999]. We
will deal with each “place” in the number – thou-
sands, hundreds, tens, and units – separately.

Some “trivial” code has been left out in this tuto-
rial, and you are expected to fill it in. Each step ends
with code that is complete and executable. As you go
through this tutorial, you are encouraged to send code
down to F# Interactive to play with it. You will also
be introduced to a small number of other functions in
this tutorial; when an unfamiliar function occurs, we
will briefly describe it. All of the functions used here
are given fuller descriptions on page 55.

1. Just as you have done previously, start a console
application. Once again, your code will be writ-
ten above the main function.

2. We will begin with a small function to parse num-
bers in the range [1,9].

let parseUnits = function

| 0 -> ""

| 1 -> "one"

| 2 -> "two"
...

| 9 -> "nine"

| _ ->

failwith "I expected a single digit."

Notice that we are using the shorthand syntax for
a function that accepts an input and immediately
pattern-matches it using a match expression. The
failwith function just throws an exception, typi-
cally crashing the program as it does so.

3. Now let’s write a function to parse numbers in
the range [1,99]. In English, this annoying be-
cause all the numbers in the range [10..19] have
special names. However, we can use the already-
defined parseUnits function to help us. We cannot
use any identifier that still needs to be defined, so
we will need to place our parseTens function be-
low the parseUnits function.

let parseTens n =

let tens = (n % 100) / 10

let units = n % 10

match tens with

| 0 -> parseUnits units

| 1 ->

match units with

| 0 -> "ten"
...

| 9 -> "nineteen"

| _ ->

failwith "Units can’t be >9"

| n ->

sprintf "%s %s" (tensName n)

(parseUnits units)

Notice that we’ve used some let-bindings at the
top of this function so that we can break up the
number into “tens” and “units” places. We didn’t
have to use let-bindings, but we did because it
makes the code easier to read. We can’t use same
shorthand form that we used for parseUnits, be-
cause we need an explicit identifier to use for the
let-bindings at the top of the function.

The sprintf function is introduced here, too. It
uses a format string, very similar to C format
strings that you might have encountered, and
generates a string using the format string and the
input(s) that it is given.

If you’re confused about why the very last line
works, re-read it carefully! We are re-binding the
n identifier, so within the scope of that branch of
the match expression, n is not the same as the n

that is bound in the topmost line.

You will need to create a tensName function, with
the signature int -> string, to get this to work.
Such a function is very similar to what you’ve al-
ready done in step 2, so you should have no prob-
lem with it.

Hint: If you have written the tensName function
and are getting told that it is “not defined”, check
if you have put it at the correct place in the code.
The tensName identifier must be defined before you
can use it.

4. Now let’s make a function that can handle num-
bers in the range [1,999]. Once again, we’ll use
previously-defined functions to help us out.

let parseHundreds n =

match (n % 1000) / 100 with

| 0 -> parseTens (n % 100)

| h ->

let prefix =

sprintf "%s hundred"

(parseUnits h)

match n % 100 with

| 0 -> prefix

| rest ->

let units = parseTens rest

sprintf "%s and %s" prefix units

5. We’ll now make a function to parse numbers in
the range [1,9999]. We can do this in a similar way
to the parseHundreds function, with a few changes.
The following cases need to be correctly handled:

• 299 7→ two hundred and ninety nine
• 2999 7→ two thousand nine hundred and

ninety nine
• 2099 7→ two thousand and ninety nine
• 2009 7→ two thousand and nine
• 2000 7→ two thousand

let parseThousands n =

match (n % 10000) / 1000 with

| 0 -> parseHundreds (n % 1000)

| t ->

let prefix =

sprintf "%s thousand"

(parseUnits t)

match n % 1000 with

| 0 -> prefix

| rest ->

let rest = parseHundreds rest

match (n % 1000) / 100 with

| 0 ->

sprintf "%s and %s" prefix rest

| _ -> sprintf "%s %s" rest

6. We’ll tie everything together into a single func-
tion that can parse numbers in the range [-9999,
9999].
let parse = function

| 0 -> "zero"

| n ->

match n < -9999 || n > 9999 with

| true -> failwith "Out of range!"

| _ ->

match n > 0 with

| true -> parseThousands n

| _ ->

sprintf "minus %s"

(parseThousands n)

By now, you will have noticed how more compli-
cated functions build on simpler functions. Func-
tions are the workhorses of functional program-
ming, so this is the kind of design that you will
find again and again!

7. Now we’ll make this into a “real” program
that you can run from the console, rather than
running through F# Interactive. Leave the
[<EntryPoint>] annotation intact, and replace the
main method with this:
let main _ =

printf "Gimme a number: "

let v = System.Console.ReadLine ()

printfn "%s" (parse (int v))

0

You can now build your program and run it from
the command line! You will probably have to ac-
tually go to the command line console and run
this. If you don’t, the answer will flash up for a
few milliseconds and then the program will end
... and the console window will probably close
before you are able to see it.

EXTENSIONS

1. Can you extend this to work for numbers in a
larger range — up to 99999 or 999999, for exam-
ple? Try it out!

2. In step (3), you created a tensName function. If
you created it outside of parseTens, move it inside
parseTens. If you created it inside parseTens, move
it outside. How difficult is it to make this kind of
code change?

28 TUTORIAL

CAN YOU BE HELPED?

Introducing functional programming to the dys-
functional mind can result in a number of peculiar
mental conditions. These conditions can have seri-
ous consequences, including module failure and exami-
nation dysfunction. If you suspect that you may be af-
flicted by any of these conditions, please get yourself
checked out by your nearest functional-programming
lecturer, and follow the condition-specific advice
given below. If you suspect that one of your class-
mates is developing one or more of these conditions,
encourage them to obtain help and, whatever else you
do, do not take any action that might aggravate the
condition.

SCEPTICALEPSY

This mental condition is characterised by only half-
believing what the lecturer, language documentation,
or online resources say. It is often found during dis-
cussions of fundamental concepts such as immutabil-
ity, first-class functions, or referential transparency.
Students afflicted by scepticalepsy often find them-
selves asking a question, receiving an answer, and
then asking exactly the same question again.

“ Values can’t really be immutable. Nobody
could program like that! There must be a
way to change them, somehow, I’m sure...
maybe I can trick the language somehow.
There’s got to be a way! ”To achieve understanding, the sufferer must learn

to have some faith in their lecturer, or at least in the
language documentation. If we say that this is how
things are, then this is how things are. Simply accept
it.

ANALOGICULOSIS

This is characterised by a deep-rooted conviction
that a particular concept or feature of a functional
language is actually a similar feature in the non-
functional language of your choice — despite all ev-
idence to the contrary. Sufferers can often be found
staring directly at problematic code and insisting that
it works in the way that it clearly does not.

“ So these match expression things ... they’re
actually switch statements in disguise, right?
Right? Right! ”Analogiculosis can only be cured by obtaining an

understanding of how the constructs in the language
actually work. Some therapists report that extensive
practical work may be helpful in this regard.

FUNCTIONALOPHOBIA

This mental illness is characterized by the belief that
functional programming can only be done by the in-
sane1. The sufferer’s mind begins to race and whirl
whenever they encounter functional code and, seek-
ing to avoid becoming insane, they seek to avoid
functional programming itself. A student afflicted by
functionalophobia is calm and stable while others are
struggling with difficult concepts, and often pretends
that functional programming does not exist or, if they
accept that it does exist, that it is not something that
they would ever have to learn. Extensive and de-
termined procrastination is a symptom shared by all
functionalophobia sufferers.

“ What are you doing? Oh ... that stuff. Yeah,
I’ll get to it later. I’ll do it on my own. Hey,
do you want to go out tonight? ”Functionalophobia is often fatal; the cure is simple,

but must be enacted before too much time has passed.
Sufferers must study very simple code examples, un-
derstand them fully, and then write, run, and modify
the code themselves. Simple tutorials or examples are
highly recommended. An afflicted student must in-
crementally move on to more and more complex ex-
amples as time passes, but be warned: attempting to
move too quickly to a too-complex example may re-
sult in a relapse.

SYNTACTIC DYSLEXIA

This is usually characterised by an inability to dis-
tinguish between patterns and expressions. In severe
cases, the sufferer is unable to see larger syntactic dif-
ferences: function application starts to look like “two
variables next to each other”, the unit value starts to
look like “a function call without a function”, and so
on. Interpretation and understanding of code quickly
becomes impossible. Syntactic dyslexia can lead to
analogiculosis or even, in extreme cases, functionalo-
phobia.

“ So we bind x here ... no, wait, we evaluate
x ... or do we apply x? Or pass it as an in-
put? Is this shadowing or something? I don’t
know! Well, I’ll just guess and move on. I’m
sure it’s not that important. ”Syntactic dyslexia can be remedied by studying the

Syntax sections of these notes carefully. Lines of code

1This belief is incorrect. Functional programming can be
done by the sane and the insane.

that are found in the wild should be written out and
compared to the relevant Syntax section, and each
part of the line should be characterized as pattern or
expression. In extreme cases, the kind of expression —
for example, “function application” or “addition” —
should also be written down. As familiarity with the
syntax increases, the syntactic dyslexia should natu-
rally fade away.

HYPOPRACTICAL PSYCHOSIS

This is characterized by the strong belief that func-
tional programming is purely theoretical, and that no
“real” systems are ever written in a functional lan-
guage. To achieve such a strong belief, a sufferer must
ignore significant software such as WhatsApp and
Facebook Messenger (both written in Erlang), Face-
book spam detection (written in Haskell), Pinterest’s
web API (written in Elixir), the XBox Achievements
system (written in F#), and so on; in addition, they
often need to fixate on a particular imperative pro-
gramming style as being the “one true way” of pro-
gramming. The disconnect from reality is maintained
by constantly shifting the goalposts: whenever an ex-
ample of real-world functional programming is pro-
vided, the sufferer will shift their definition of what a
“real” system is to compensate, until only a small sub-
set of software (such as “AAA games”) is considered
to be a “real” system.

“ But what can you actually do with functional
programming? There’s no way that I’ll ever
use it! We shouldn’t be learning such useless
stuff! ”There is no definitive cure for hypopractical psy-

chosis, though some therapists have found that re-
peated exposure to practical functional programming
in a workplace environment can be very helpful.
Other therapists suggest introducing functional pro-
gramming within the “safety net” of non-functional
programming (see, for example, C#’s LINQ or the
popular lodash JavaScript library).

SPACE DYSMORPHOPSIA

A person suffering from space dysmorphopsia is un-
able to correctly perceive whitespace in a program-
ming language where whitespace is significant, such
as Python or F#. This leads to an inability to under-
stand why their code isn’t working. A secondary is-
sue is that sufferers find it difficult to modify their
code, simply because they laid it out improperly in
the first place. In extreme cases, a sufferer’s code will
look as though it has been indented randomly, mak-
ing it very difficult to read — and making it much
more likely to have whitespace-related bugs.

Dysmorphopsic Correct
let make a = let b = 7 let make a =

a + b let b = 7

a + b

If the name of the make function ever needs to
change, the dysmorphopsic sufferer will have to re-
indent the entire function ... manually.

“ Every time I make a small change, I have
to re-indent everything! And then my code
just stops working properly, and I haven’t
changed anything! How can anyone pro-
gram like this? ”Current therapeutic guidelines recommend that

space dysmorphopsic individuals should examine
well-indented code and try to emulate it wherever
they can. A minority of therapists believe that space
dysmorphopsia is merely a symptom of a failure to
learn what the Tab key is for, and if this is the case,
then the sufferer should immediately stop manually
indenting using Space , and start using their code ed-
itor’s automatic Tab and Shift + Tab identation.

30 CAN YOU BE HELPED?

ITERATION

F# supports various looping constructs, including
while and for, but we won’t be using them. The func-
tional way to loop is by using Jrecursion.

Recursion is the calling of a function from within
itself, usually with a different input. This cannot be
achieved with the syntax that you already know be-
cause a let binding is only accessible after its defini-
tion, not within its definition. However, we can use
the special keyword rec to allow the use of a bound
name within its definition. This allows us to create re-
cursive functions.

let sumBetween m n =

let rec sumTo v =

match n=v with

| true -> v

| _ -> v + sumTo (v+1)

match m>n with

| true -> 0

| _ -> sumTo m

This function adds up the numbers in the range
[m,n]. It works because the rec keyword allows the
identifier sumTo to be referred to within the function
definition. Trace through it and understand how it
works.

A recursive function will always have one or
more Jbase cases, which describe the conditions un-
der which the recursion stops, and one or more
Jrecursive cases, which describe the conditions un-
der which the recursion continues. It is extremely
common to see the following structure in many loop-
ing functions:

let rec
:::::::
funcname input =

match expr with

| basecase_pattern ->

basecase_expression

| recursive_pattern ->

recursive_expression

Verify for yourself that our earlier example does fol-
low this pattern.

MORE EFFICIENT RECURSION

When a function call is made, a new stack frame typ-
ically needs to be allocated, and this takes up a bit
of space and time. Since recursion involves calling a
function for each iteration, it is typically slower than
looping in a non-functional language.

Note that it is only necessary to set up a stack frame
because some work may remain to be done after a re-
cursive call is made. For example, examine line 5 in
the example at the top of the page. After the call to

sumTo (v+1) is completed, the resulting value must still
be added to v. It is only after this is done that all the
work in the function is complete. If a new stack frame
was not set up, we would lose the ability to continue
with the additional work after the recursive call com-
pletes.

To make recursion just as efficient as iteration, most
functional languages (including F#) support a tech-
nique called Jtail recursion. Using this technique,
the compiler tries to see if any work remains to be
done after a particular recursive call is made. If no
work remains to be done, then the same stack frame
can safely be used to do the recursive call, and recur-
sion becomes just as efficient as iteration!

To use the tail recursion technique, your recursive
function calls must be in Jtail position.

“Normal” recursive call Some work remains to be
done after the recursive call completes.

Tail position recursive call No work remains to
be done after the recursive call completes.

Converting some of your recursive calls into tail re-
cursive ones can improve the efficiency of your pro-
gram. If you convert all of your function’s recursive
calls into tail recursive calls, then we say that your
function is tail recursive.

TAIL RECURSION, PRACTICALLY

To convert a non-tail recursive call into a tail re-
cursive one, you must pass all the relevant data
that you still need to use to the recursive func-
tion. This is often done by means of one or more
Jaccumulator parameters. However, if no data needs
to be passed onward, then no additional parameters
are necessary.

let sumBetween m n =

let rec sumTo v acc =

match n=v with

| true -> v + acc

| _ -> sumTo (v+1) (v+acc)

match m>n with

| true -> 0

| _ -> sumTo m 0

This function adds up the numbers in the range
[m,n], using tail recursion. The accumulator param-
eter is called acc. Notice that after the recursive call
is made, there is no work whatsoever that remains
to be done. Trace through the code and understand
how it works.

Tail recursive functions often look a bit more com-
plicated due to the inclusion of accumulator parame-
ters.

32 ITERATION

EXERCISES

1. Explain the problem that is solved by an accumu-
lator in a tail recursive function.

2. What would happen if a recursive function does
not have a base case, or never executes its base
case?

3. What characterises a recursive call in tail position?

4. Convert the following iterative C# methods into
recursive F# functions:

(a) int NumOdd(int start, int end) {

int total = 0;

for (int i = start; i < end; i++)

if (i%2 == 1) {

total++;

}

}

return total;

}

(b) int NextMul(int start, int n) {

while (start % n != 0) {

start++;

}

return start;

}

(c) bool IsPrime(int n) {

int test = n-1;

while (test > 1)

if (n % test == 0) {

return false;

}

test = test-1;

}

return true;

}

34 ITERATION

TUTORIAL

In this tutorial, we will practice creating recursive
functions.

SQUARE ROOT

The square root of a number n is the value which,
multiplied by itself, will result in n. Square roots
are defined for positive numbers only. The Newton-
Raphson method finds a square root by guessing a
number and then improving the guess iteratively un-
til it is “good enough”. Given a guess xi for a number
n, we can say that the next approximation xi+1 can be
found using the equation

xi+1 =
xi +

n
xi

2

Let’s make our own implementation of a square
root function.

1. We will start by checking the input for validity.

let sqrt n =

match n <= 0.0 with

| true -> failwith "Impossibru!"

| _ ->

calculate (n/2.0) 0

Of course, we still need to write the calculate

function. For now, notice that we pass along a
0 parameter, which will keep track of the number
of times that we’re iterating through.

2. Let’s write calculate. We will place it be-
tween the let sqrt n = and match n <= 0.0 with

lines, indented appropriately. Ten approxima-
tions should get us quite close to the “real” an-
swer.

let rec calculate guess i =

match i with

| 10 -> guess

| _ ->

let g = (guess + n/guess) / 2.0

calculate g (i+1)

Once you’re done, try it out in F# Interactive!
You should have some very good approxima-
tions: sqrt 2.0 should give you 1.414213562, for
example.

EXTENSIONS

1. Is calculate tail recursive? How can you demon-
strate that it is or is not?

2. Why did we place calculate within sqrt? What
benefit do we get?

3. Instead of stopping arbitrarily after 10 iterations,
you could choose to stop when two successive
guesses are “close enough”. Can you modify the
code to do this?

CHOCOLATE WRAPPERS

A shop sells chocolates for r rands each, and will ex-
change e chocolate wrappers for a new chocolate. As-
suming that you start off with c rands, how many
chocolates will you be able to obtain from the shop?

Work out the answers yourself for the following
values of c, r, and e, using a pencil and paper.

• c = 15, r = 1, e = 3 (you should get 22)

• c = 16, r = 2, e = 2 (you should get 15)

• c = 12, r = 4, e = 4 (you should get 3)

• c = 6, r = 2, e = 2 (you should get 5)

1. We need to keep track of the two things that we
can use to buy chocolates: cash and wrappers. If
we can’t buy chocolates with either, then we’re
done! If we can, then we should buy them, un-
wrap them, and see if we can make another trip
to the store. Create this function:

let rec buy c e cash wraps =

match cash/r with

| 0 ->

match wraps/e with

| 0 -> 0

| n ->

n + buy c e cash (wraps % e + n)

| n -> n + buy c e (cash % r) n

The cash tracks how much cash we have on hand,
and the wraps tracks how many wrappers we
have on hand. Initially, we start off with r cash
and 0 wraps. Use the code to work through the
problems above, and verify that you obtain the
correct solutions.

2. It’s very awkward to call this function: we have
to expect our callers to always pass a 0-valued
wraps input, for example. We can do much bet-
ter. Change your code as follows:

let chocs c r e =⊙←− buy function goes here!
buy c e r 0

Now we can call chocs 15 1 3 for the first sample
problem — much nicer!

3. We’re not done yet. Now that we have the c and
e in scope for buy, we don’t need to keep passing

them through. Simplify the buy function by re-
moving the c and e inputs entirely. The last line
of the chocs function should then read: buy c 0 .

4. This all seems quite nice, but it could be more ef-
ficient. Let’s make buy into a tail recursive func-
tion. Change it to read as follows:

let rec buy cash wraps t =

match cash/r with

| 0 ->

match wraps/e with

| 0 -> t

| n ->

buy cash (wraps % e + n) (n + t)

| n ->

n + buy (cash % r) n (n + t)

36 TUTORIAL

BASIC DATA STRUCTURES

A data structure or Jcomposite type helps you to
model a problem in a way that makes it easier to en-
code or solve using a programming language. There
are many different kinds of data structure, but we will
only be discussing three of the more common kinds of
structure here.

1. A Jtuple or Jrecord allows you to squash to-
gether a bunch of data into a single structure.
Example use case: representing a person with a
name and a birthdate and a weight and a height,
and so on. It makes sense to keep all of these
things together in one data structure.

2. A Jdiscriminated union allows you to represent
discrete alternatives. Example use case: repre-
senting the states that water can be in by using
the different cases “Solid”, “Liquid”, and “Gas”1.
These states are discrete alternatives because wa-
ter cannot be in more than one state at a time.

3. A Jlist allows you to represent zero or more val-
ues, all of which must have the same type. Exam-
ple use case: storing the titles of favourite books.

F# supports more data structures than this natively,
but these will be enough to allow us to start repre-
senting a wide variety of problems. This chapter will
cover tuples, records, and discriminated unions; we
will leave a discussion of lists until later.

Throughout the descriptions of data structures, take
notice of two things:

1. Each kind of data structure is created in a differ-
ent way.

2. Pattern syntax for a data structure is often very
similar to creation syntax. If you learn the one,
then the other is typically very easy to remem-
ber. Pattern-matching is used throughout for
Jstructural decomposition: the extraction and
binding of specific data from within a data struc-
ture.

TUPLES AND RECORDS

SYNTAX: TUPLE CREATION
expr0 , expr1 , · · · , exprn

1Yes, I know that there are five states of matter. No, I’m
not going to include the other two.

SYNTAX: TUPLE PATTERN
p0 , p1 , · · · , pn

A tuple is created by using the comma operator.
Each tuple has a certain number of items in it; this
is called its Jarity. A tuple must have at least 2 ele-
ments.

Each pattern in the tuple pattern matches an ele-
ment of the tuple. The arity of the pattern must match
the arity of the tuple; otherwise, the code will not
compile.

The type of a tuple is the type of each of its compo-
nents, separated by a * symbol.

"F#", 4.0, 2015, (), ’K’

This is a tuple with arity 5. Its type is
string * float * int * unit * char. The following
patterns will all match the above tuple:

• "F#",_,_,_,_

• _,4.0,k,t,_

• t,_,y,_,’K’

• _

• _,_,_,(),c

A record is a predefined group of named values.
Each value can have a different type. The definition
of a record must occur outside of a function or bind-
ing.

SYNTAX: RECORD DEFINITION
type

:::::
Name =↓{

::::
field0 : type0; · · · ; ↓:::::

fieldn : typen ↓}

Instead of semicolons, fields in a definition can also
be separated by newlines and indents. It is conven-
tional to start type names with a capital letter and field
names with a lowercase letter. The type of a record is
the name of the record.

type Person = {

Name : string

Birth : int * int * int

Weight : float

}

SYNTAX: RECORD CREATION
{ Name.

::::
field0 = expr0; · · · ; ::::

fieldn = exprn }

SYNTAX: RECORD PATTERN
{ Name.

::::
fieldi = pati ; · · · ; :::::

fieldm = patm }

All fields must be specified during record creation.
When matching, however, only the fields that you
are interested in need to be named. The record pat-
tern matches each named field individually, and all
the named fields must match for the overall pattern
match to be successful. Order of fields during creation
or matching is unimportant.

Once again, a ; character can be used to sepa-
rate fields instead of a newline. If there are different
records that have the same field name(s), then F# is
sometimes unable to figure out which type you are
creating or matching against. To help it find the cor-
rect type, you can choose to prefix the first field bind-
ing with the record name.

The value of a field within a record can be extracted
by using dot-notation.

SYNTAX: DOT-NOTATION
value.

::::::::
fieldname

Records are immutable, so it is impossible to change
them after they have been created. However, it
is possible to create a new record with most of
the values taken from an existing record and some
of the values being different. We call this syn-
tax a Jcopy and update expression (and sometimes
shorten it to “update expression”).

SYNTAX: RECORD UPDATE
{ v with

::
f0 = e0 ; · · · ; ::

fn = en }

This syntax makes it easy to create a record based
on an existing record: you only need to supply the
fields and values that differ. The fields which are not
specified have their values copied from the existing
record. Note that the type of the “updated” record
will be the same as the type of the original record.

let k =

{ Birth = 1981,8,1

Name = "Y M M"

Weight = 67.2 }

let v = { k with Birth = 1980,8,9 }

The name v is bound to a new Person record with
most values taken from the existing record k.

BEWARE THE -
F# allows custom operators to be defined, and inter-
prets =- as if it were a custom operator. This means
that syntax such as {Blah=-4} will be misinterpreted!
Make sure that you write it as {Blah= -4} instead.

The following patterns will all match the record
bound to k in the previous example.

• { Birth = y,m,d ; Name = s }

• { Birth = 1981,v,1 }

• { Weight = v ; Birth = _,8,_ }

• { Birth = k ; Name = "Y M M" }

TUPLES OR RECORDS?
Tuples and records do the same thing: they group a
bunch of values together. Here is some advice about
which one to use in particular situations.

• Are you grouping together more than 3 or 4 val-
ues? If so, consider using a record instead of a
tuple. The names in a record will make it easier
to remember what the meaning of each value is.

• Is the grouping meaningful or useful in the long
term in your program? If so, use a record. A
“meaningful”, “long-term” group might collect
together all the attributes of a student, for ex-
ample. These attributes belong together natu-
rally as part of a greater whole, and the group-
ing will be used throughout your program, so it’s
worth taking the time to define a record. On the
other hand, if you’re just slapping a name and
a student number together for a quick compar-
ison, you might as well use a tuple.

If you’re still not sure, use a tuple: it’s much
more convenient to use. However, if you find your-
self grouping together the same values three or more
times, reconsider! Should you be taking the time to
give those values an identity of their own? What
meaning do they have together?

DISCRIMINATED UNIONS

Each alternative in a discriminated union is called a
Jcase. Each case can have a value associated with it.

SYNTAX: DISCRIMINATED UNION DEFINITION
type

:::::
Name =

|
::::
Case0 of type0...

38 BASIC DATA STRUCTURES

|
:::::
Casen of typen

The type of a discriminated union value is the name
of the discriminated union. Each case identifier must
start with an uppercase letter. Case identifiers are
sometimes called Jlabels, Jtags, or Jconstructors.
A case may optionally be linked to data using the
of type syntax. The specified type may be the

::::
Name

of the discriminated union; this makes recursive data
structures, such as trees, very easy to implement. The
definition of a record must occur outside of a function
or binding.

type WinVersion = Seven | Ten

type OS =

| Windows of WinVersion

| OSX

| Linux of string * float

The OS discriminated union represents different op-
erating systems.

SYNTAX: DISCRIMINATED UNION CREATION
::::
Case expr

SYNTAX: DISCRIMINATED UNION PATTERN
::::
Case pat

A tag without linked data will construct the discrim-
inated union simply by writing the tag name. A tag
with linked data is a function which, when supplied
with its input, will construct the discriminated union.
If a case is defined as having linked data, then a pat-
tern to match that data is mandatory; if a case is de-
fined without linked data, then no such pattern is nec-
essary. A discriminated union pattern will only match
when both the tag and data (if there is linked data!)
match.

let t = Linux ("NixOS", 17.09)

let v = OSX

let r = Windows Ten

Each of the three lines above will create a discrim-
inated union of type OS, and bind it to an identifier.
The following patterns will all match one or more of
the values bound above.

• Linux _

• OSX

• Linux (name,version)

• _

• blobby

• Linux ("NixOS",ver)

• Windows _

• Windows Ten

COMPARISON

You can only compare the same data type with the
same data type, so you can’t compare records with tu-
ples, or tuples with discriminated unions.

Tuples If all the types in a tuple are comparable,
then the tuple is comparable to another tuple of
the same type. Tuples are compared item-by-
item, starting from the first item. As soon as
one item is greater or less than the corresponding
item in the other tuple, a result is generated.

The following statements are true.
• 8,7,6 > 6,7,8

• 8,7,6 > 8,6,7

• 9,2 = 9,2

• 6,7,8 cannot be compared to 8,5. The
types (int * int * int vs int * int)
are different.

• 9,6 cannot be compared to 7,true. The
types (int * int vs int * bool) are
different.

• (fun _ -> 5),4 cannot be compared to
(fun _ -> 2),2. The types are the same
(i.e. (’a -> int) * int); however,
function types are not comparable.

Records If all the types in a record are comparable,
then the record is comparable to another record
of the same type. Records are compared item-by-
item, starting from the first field in the record def-
inition and ending with the last field in the record
definition. As soon as one field’s value is greater
or less than the corresponding field’s value in the
other record, a result is generated.

Discriminated unions A tag that occurs earlier in
the data definition is considered to be less than a
tag which occurs later. A discriminated union is
considered to be comparable if all the data linked
to all tags of the discriminated union is compa-
rable — or if no data is linked to any tag. If two
values are equivalent in terms of their tags, and
there is linked data, then the linked data is com-
pared.

BASIC DATA STRUCTURES 39

“AS” PATTERNS

Sometimes we want to structurally decompose a
value and keep a reference to the whole. To do this,
we can use an Jas-pattern.

SYNTAX: as PATTERN
pattern as

::::::::
identifier

The binds the entire value that is matched to an
identifier, allowing you to structurally decompose
and extract identifiers while keeping a reference to
the whole. It is particularly useful when dealing with
records and discriminated unions. If pattern suc-
ceeds, then the binding to

:::::::::
identifier also succeeds.

let addWeight v ({ Weight=w } as r) =

{ r with Weight=w+v }

This function uses a record pattern to extract only
the Weight field from a record, while at the same time
binding the entire record to the identifier r using an
as-pattern. We have both the entire record and the
field that we’re interested in, so we can easily use
a copy-and-update expression to give back a record
with an altered Weight value.

40 BASIC DATA STRUCTURES

EXERCISES

1. Consider the following code.

let a = 2, 3

let b = 9.0, true, ((5, 83), a)

(a) Write down a pattern to extract the value 3

from a and bind it to the identifier t

(b) Write down a pattern to extract the values
true and 3 and bind them to the identifiers a

and b respectively
(c) Is the pattern that you wrote for (b) the short-

est pattern that you could use to answer the
question? If not, write down a shorter pat-
tern that does the same thing.

(d) Circle patterns which will match a:
• _, 3

• 3, _

• _

(e) Circle patterns which will match b:
• _, _

• _

• _, true, (a, b, c)

• _, true, _, _

• 9.0, _, _

• 9.0, true, _, _, _

• b, _, (a, _)

• _, c, ((_, a))

2. Evaluate (fun (a,b) -> b-2, a+8) (5,5)

3. Consider the following function.

let so (la, ti) doh =

match ti + "km", la with

| _, true -> doh + 5

| _ -> 0

(a) What is the type of this function?
(b) If the first line was written as

let so la (ti, doh) =, what would the
type of the function be?

4. What is structural decomposition?

5. (a) Define a record type that represents an XYZ
coordinate in 3D space.

(b) Write down a pattern which extracts only the
Y-coordinate from a record value of the type
you defined, and binds it to guyver.

6. A circle with a radius, a rectangle with a width
and length, and a blob are different shapes repre-
sented by the following discriminated union:

type Shape =

| Circle of int

| Rectangle of int * int

| Blob

(a) Create a Circle with radius 100.

(b) Create a Rectangle with length 5 and width
8. You may assume that the length is speci-
fied first.

(c) Create a Blob.

(d) Assume that your Rectangle from (b) has
been created. Now look at the following pat-
terns; if a pattern will match your Rectan-
gle, write down Y; if it won’t match, write
down N; and if it is an invalid pattern, write
down WTF. If a match is successful, also
write down any identifiers and the values
that they are bound to.

i. Rectangle

ii. Rectangle _

iii. Rectangle (_,_)

iv. Rectangle _, _

v. Rectangle (height, size)

vi. Shape

vii. Shape Rectangle

viii. Shape.Rectangle

ix. Shape.Rectangle _

x. Shape Rectangle _

xi. Shape _

xii. Rectangle (5, 8)

xiii. Circle _

7. You are making a booking system for a theatre.
Each seat in the theatre may be sold, unsold, or
occupied by a Very Important Person (VIP). Sold
seats are linked to the name of the person they’re
sold to, and VIP seats are given a numeric rating
that indicates how important the VIP is. Define a
data type to represent a seat.

8. Consider the following types.

type Glass =

| Full of int // percentage

| Empty

type Customer = {

Name : string

Height : float // in meters

Drink : string * Glass

}

(a) Create a Glass that is half-full (or, if you pre-
fer, half-empty).

(b) Circle all the patterns which will match the
Glass that you created.

i. Glass

ii. Glass _

iii. Empty

iv. Full

v. Full _

vi. Full 50.0

vii. _

viii. Full empty

(c) Create a Customer named Severus Snape.
Snape is 189cm tall, and drinks Pumpkin
Juice ... but his glass is empty.

(d) Circle all the patterns which will match the
Customer that you created.

i. Customer _

ii. Customer

iii. {Name="Severus Snape"}

iv. Name=_

v. {}

vi. {Name=n; Height=h; Drink=d}

vii. {Name=n; Height=h; Drink=(_, Glass)}

viii. {Height=h; Name=me}

ix. {Drink=’a}

x. {Drink=_}

xi. {Drink=(s, Empty)}

9. Why could the Result type be considered supe-
rior to the Option type?

10. The technology of the future allows a user to or-
der a drink (tea, coffee, or fruit juice). The tea
may be Earl Grey, Rooibos, or Ceylon. Coffee has
a strength (weak, OK, or strong) and you can add
any number of spoons of sugar to it. Tea and cof-
fee may be iced or hot; juice is always cold. Write
down data types that describe a drink order and,
as far as possible, make it impossible to describe
invalid combinations. Your data types should al-
low me to order Tea (EarlGrey, Hot).

11. A hotel sells accommodation. Every room has
a room number and a status: it can be unavail-
able, booked, available, or occupied. If a room is
unavailable, there must be a reason (such as un-
dergoing maintenance or needs to be fumigated or ...
well, anything else). A booked room is associ-
ated with the name of the person who booked it.
An occupied room is occupied by a customer, and
from the hotel’s perspective, the only important
things about a customer are their name and their
credit card number.

(a) Write data structures which describe this
scenario.

(b) Create a room 11 that’s been booked by
Frank Talk.

(c) Create room 16 that’s occupied by Banksy,
who has credit card number 5555-4325-1836-
0019.

(d) Create an available room 909.
(e) Write a function which, given a list of rooms,

will book all the available or booked rooms
on the list in the name of Lord Voldemort.

42 BASIC DATA STRUCTURES

TUTORIAL

In this tutorial you will use the composite types that
you’ve just learned about.

COMMISSION OF SALES

Instead of paying a salary, some businesses give a
monthly commission to their workers. Each worker
will buy some of the product from the business. Then
workers will sell the product to customers at a higher
price, and pay the money to the business. The busi-
ness then pays the worker a percentage of the profit.

In this problem, the business sells cosmetics. You
can buy branded lipstick (Levron or Maybepoint
brands) in either red, green, blue, or black colors. You
can also buy nailpolish, in all of the aforementioned
colors. Lastly, you can buy mascara. The cost prices
for these are as follows:

Mascara R13.99
Blue Levron lipstick R79.49
Red lipstick R10.99
Any other lipstick R12.99
Green nailpolish R10.34
Red or blue nailpolish R17.49
Any other nailpolish R19.99

Selling prices add a mark-up of 35%.
We will create a very small system that lets the busi-

ness (or a worker) figure out how much commission
someone has earned, based on what they’ve bought
and sold.

1. Let’s start by defining a few data types that help
us to represent the problem. First, we’ll define
the products.

type Color = Red | Green | Blue | Black

type Brand = Levron | Maybepoint

type Product =

| Lipstick of Color * Brand

| NailPolish of Color

| Mascara

Here we have defined all of the different products
that are offered. We’ve done this quite differently
from how you might have done it in other lan-
guages, so let’s see why we’ve laid it out like this.

• We realize that a product’s color can’t be red
and blue, and it can’t be black and green,
at the same time. More generally, we real-
ize that the colors are distinct: an item can’t
have more than one color. Once we real-
ize that, it’s easy to see that the colors form
a discrete set of alternatives, and whenever
we have that, we should be using a discrim-
inated union to represent it.

• We realize the same thing about brands. An
item is made by one manufacturer, not two.
So we represent that as discriminated union
as well.

• Our lipsticks have a color and a brand, so
we link a tuple of that data to the Lipstick

case.
• Our nailpolish has only a color, so we just

link a color to it.
• Mascara is always black, so there is nothing

to link to it.

Note that the tags of a discriminated union must
start with a capital letter!

2. Now we should represent a worker who buys
and sells products. For working out the commis-
sion, the only things that are important are the
amounts bought and sold, and the name of the
worker.

type Salesperson = {

Name : string

Bought : double

Sold : double

}

We’ve made this information into a record. This
allows us to pick out only the fields that we want
to pick out when we are pattern-matching, and it
also makes it easy to see what each value means
in the record.

3. We will need to see the cost price of cosmetics, so
let’s make a function that takes in a product and
gives us the cost price of that cosmetic.

let costPrice = function

| Lipstick (Red, _) -> 10.99

| Lipstick (Blue, Levron) -> 79.49

| Lipstick _ -> 12.99

| Mascara -> 13.49

| NailPolish Green -> 10.34

| NailPolish (Red | Blue) -> 17.49

| NailPolish _ -> 19.99

Here we use the short syntax of a mapping func-
tion to reduce the amount of code we have to
write. We use discriminated union patterns to
match the data that is sent in to this function. If
a pattern matches, then we send back the cor-
responding price. Note that the order of the
cases can be very important; for example, if the
Lipstick _ pattern is placed at the top, then none
of the other Lipstick patterns can possibly match.

The second-last pattern is particularly interesting
because it shows how you can use an or-pattern
to reduce the size of your patterns. Instead of
writing the pattern

NailPolish Red | NailPolish Green

we were able to write NailPolish (Red | Green).
Seek opportunities to get better at pattern-
matching, because it is very important in control-
ling your execution path!

Try removing the third, fourth, or seventh cases
in the match expression. What warning does F#

throw up? If you remove different cases, there is
no warning; can you see why?

4. The mark-up on a product is 35%. We can write a
very simple function that takes in a product and
gives back a selling price.

let sellingPrice product =

costPrice product * 1.35

That was easy! We use the already-defined
costPrice function and just multiply. If we re-
ally feel like it, we can even reduce the amount
of code that we need to use to define exactly the
same function. Consider this rewritten code:

let sellingPrice = costPrice >> (*) 1.35

Can you see why this function is exactly the same
as the original sellingPrice function? In fact,
some would argue that the shorter function is
also clearer!

5. How about a function to create a worker?

let worker name =

{Name=name; Sold=0.0; Bought=0.0}

This is a trivial function to create a worker with
the specified name, who has not bought or sold
anything. Don’t be afraid to create “trivial” func-
tions: in functional programming, we often cre-
ate complex functions by manipulating simple
functions.

6. We want to express the idea of a worker buying n
units of a product from the business. Once again,
this is a trivial function:

let bought n product ({Bought=v} as sp) =

let amt = float n * costPrice product

{sp with Bought=v + amt}

There are two things to notice about this func-
tion. The first is that we use a pattern-match to
extract the important value from the Salesperson

input while also keeping a reference to the input
as a whole. The ability to use pattern-matching
in this context is something that you should take
advantage of whenever you can.

The second thing is that we’re using a copy-and-
update expression. This does not change the sp

value; in fact, it cannot change it, because val-
ues in F# are immutable. It creates a completely
new value which has exactly the same fields and
values as sp, with the exception of the explicitly
specified Bought field.

7. Now that we can express the buying operation,
how about the selling operation?

let sold n product ({Sold=v} as sp) =

let amt = float n * sellingPrice product

{sp with Sold=v + amt}

Unsurprisingly, this looks very similar to the pre-
vious function!

8. All of the pieces are now in place for writing a
commission function which calculates a person’s
commission. We’ll want this function to give
back both the name of the salesperson and their
commission.

let commission sp =

let profit = sp.Sold - sp.Bought

let fraction = 0.35

match profit > 0.0 with

| true ->

let amt =

round (profit * fraction * 100.0)

sp.Name, amt / 100.0

| false -> sp.Name, 0.0

There is no commission if there’s a negative
profit, of course. We want a two-digit rounded-
off amount, so we use an old trick: we multiply
by 100, round the result to get rid of any frac-
tional parts, and then divide by 100 to push the
last two digits to the other side of the decimal
point.

We give back a tuple of name and commission;
it’s not worth our time to make a separate record
to represent this information.

9. Go ahead and use what we’ve made! Write the
following, for example, and then pass it down to
F# Interactive.

worker "Alice"

|> bought 5 (Lipstick (Red, Levron))

|> sold 3 (Lipstick (Red, Levron))

|> bought 18 Mascara

|> bought 3 (NailPolish Green)

|> sold 3 (NailPolish Green)

|> sold 15 Mascara

|> commission

44 TUTORIAL

TYPE THEORY

Though not an intrinsic part of functional program-
ming, F# and many other modern languages — func-
tional and non-functional — use Jtype systems to
make programming more reliable. Typed functional
programming has become so pervasive that a discus-
sion of modern functional programming cannot be
complete without it.

A more Jtype-safe system can make programs
more reliable by catching more kinds of errors before
the code ever executes; however, more type-safe sys-
tems are also more restrictive than less type-safe ones,
which makes certain things difficult to express. In a
type system, every value is considered to have a type,
and the type of a value restricts what operations can
be performed with that value.

TYPE-SAFETY

Let’s consider three possible type systems, and see
how they would deal with the three-byte string "moo".

• An Juntyped language, such as assembly lan-
guage, thinks that this is just 3 bytes that happen
to be next to each other in memory. You could
take any of the values of the bytes and divide it
by 2, if you wanted to, and the language wouldn’t
complain at all. Allowing programmers to do this
kind of craziness has led to some very difficult-to-
solve bugs! Aside from assembly language, there
are almost no untyped languages that are in com-
mon use today.

• A less type-safe language, such as PHP, knows
about types and won’t allow certain operations.

$moo = true;

$moo();

Here we’ve tried to use a boolean value as if it
was a function, and PHP won’t allow it. How-
ever, PHP is much more type-unsafe than a lan-
guage such as C#; for example, it will allow us to
write code such as "hello"/2 and will evaluate it
successfully to have the result 0. Here the divi-
sion operation has been applied to a string, and
the language has no problem with that.

• A more type-safe language, such as F#, insists
that certain operations can only be performed on
certain types. Not only is "hello"/2 considered
to be invalid, code such as 8.0/2 is also consid-
ered to be invalid since the types used for divi-
sion don’t match up exactly. It restricts the oper-
ations that can be used with a value by looking
at the type of the value, and it will not implicitly

convert types without the programmer’s explicit
authorisation.

Some languages are untyped and some are com-
pletely type-safe, but most (including F#) fall some-
where in-between these two. Type-safety leads di-
rectly to reliability: when you apply an operation,
you can be absolutely certain that the operation has
valid semantics for the value that is used with it, and
“nonsense results” such as !("abc"/2)[3]-’4k’ = -51

are impossible. Because “nonsense results” are im-
possible, semantic errors cannot occur because of such
results.

PARAMETRIC POLYMORPHISM

Being type-safe is a good thing, but it reduces flexibil-
ity. Consider the following function:

let whenZero a b c ->

match a with

| 0 -> b

| _ -> c

This function will return b when a is 0, and return
c otherwise. Clearly, a must be an integer; otherwise,
it could not be matched against the constant pattern
0. What should the type of b and c be? Clearly, they
should have the same type2. It would be nice to be
able to define this function for integers, floating-point
values, strings, and anything else. In a basic type-safe
system such as the ones described above, this is not
possible; in a type-unsafe system, it is possible, but
we must then give up the reliability of a type-safe lan-
guage. Unfortunately, if we give up a type-safe lan-
guage, then code such as (whenZero n 5 "moo") + 3 be-
comes plausible: everything will work fine as long as
n is 0, and bad things will happen whenever it is not
0.

Is there a way to keep type-safety and also be
flexible? Yes, there is: a type system can be
Jparametrically polymorphic (or Jgeneric; the two
terms can be used interchangeably). In a para-
metrically polymorphic type system, a type may be
Jconcrete or parametrically polymorphic. A compos-
ite type may include a parametrically polymorphic
component, and therefore be partially parametrically
polymorphic.

• A concrete type is something like int or unit; the
operations that can be used with this type are
known.

1This is valid PHP 7.0.3 code.
2Remember: each branch of a match expression must re-

sult in the same type of value.

• A parametrically polymorphic type is defined in
relation to other types in an expression, but has
no particular operations that are specifically valid
for it. It is indicated by an apostrophe and some
letters (e.g. ’a or ’moo). At runtime, any concrete
type can be substituted in for a particular generic
type.

Let us return to the example of whenZero. We know
that b and c must have the same type, and we also
want them to be any type. F# will automatically
Jgeneralise the type of whenZero appropriately so that
these constraints are met; the type of the function
will therefore be int -> ’a -> ’a -> ’a. When type-
checking occurs, F# will ensure that each application
of whenZero has its ’a replaced by an appropriate con-
crete type, and will refuse to compile code which is
type-unsafe.

PARTIALLY PARAMETRIC

POLYMORPHISM

The basic concept of partially parametric polymor-
phism is simple: imagine that you want to create
a function that checks whether the length of a list
is odd. Of course, the list will hold elements of
a particular type, perhaps ints. In F#, we might
say that it is an int list if it holds int values.
Should our length-checking function have the signa-
ture int list -> bool, then?

If it does have that signature, that wouldn’t be as
useful to us as it could be. After all, there is noth-
ing in the length-checking function itself that makes it
only applicable to lists of integers. We might want to
check whether the length of a list of strings is odd, or
whether the length of a list of functions is odd. How-
ever, if we make the function fully generic, then the
signature would look like ’a -> bool; and you would
be able to pass in something like a floating-point num-
ber instead of a list, and our type-safety would break
down!

To keep both flexibility and type-safety, F# allows
its data structures to be partially generic. This means
that we are able to specify that the input must be a
list, and also specify that the elements of the list can
be of any type. The signature of the function could
therefore be specified as ’a list -> bool — notice that
the input is not fully generic, but partially generic! —
and all problems fall away.

TYPE INFERENCE

F# is able to identify the type of an identifier by look-
ing at way in which it is used. Code is read top-
to-bottom, left-to-right, until the language has iden-
tified a particular type that an identifier must be3. It

3If you are interested in the exact details of this process,
look up Hindley-Milner type inference.

is important to understand that the language does not
guess the type of an identifier; it proves what it must be
by constraining the type based on the available infor-
mation. This process of identifying the type by look-
ing at how it is used is called Jtype inference.

Type inference can be very easy to do. For example,
if an identifier is bound to a string value, then it must
have the string type. An important limitation to be
aware of is that when an arithmetic operator such as
+, -, or * is used, F# will assume that any identifiers it
is used with must be ints if no additional information
exists to clarify the type.

PIPING FOR IMPROVED INFERENCE
F# does type inference from left to right, and the
pipe operator allows us to reorder an expression such
as f (g x) to be x |> g |> f. These expressions are
semantically equivalent, but in the first expression,
F# encounters f first and tries to infer its type; in
the second, F# encounters the input value x first.
Examining the input value first sometimes allows it to
make inferences that it would otherwise be unable to
make, so if you write code that uses the pipe operator
more frequently, F# might be able to do better type
inference for you!

If there is no information that constrains an value to
be a particular type, then F# understands that value
to be generic.

let t r = fun e -> e + 2.5

What is the type of this function? To find it, we
must examine the function itself and add constraints
wherever they are necessary. Try and work from left
to right, top to bottom.
1. Let’s begin with a completely generic function,

’a -> ’b.

2. The output of t, when given its input r, is the
function fun e -> e + 2.5. This is a function
type, we can therefore constrain ’b to be a func-
tion type. Our updated type for t looks like
’a -> (’b -> ’c).

3. The expression e + 2.5 must result in a float.
Therefore, we can update our type to be
’a -> (’b -> float).

4. The only thing that can be added to a
float is another float, so e must be a float.
Therefore, we can update our type to be
’a -> (float -> float).

5. There is nothing that constrains r, so it can
remain as type ’a.

That concludes the type inference. The brack-
ets are unnecessary because a curried func-
tion ’a -> ’b -> ’c -> ... is always read as
’a -> (’b -> (’c -> (...))), so we can remove

46 TYPE THEORY

the brackets. The type of the function is
’a -> float -> float.

TYPE ANNOTATIONS

SYNTAX: TYPE ANNOTATION
(x : type)

Any pattern can be supplemented by a
Jtype annotation which overrides the type in-
ference logic and forces the language to only match
that pattern to values of a particular type. The
round brackets in annotation syntax are not strictly
necessary, but are useful for avoiding ambiguity in
larger patterns.

You can also use a generic type annotation (such as
’a) to force F# to regard a pattern as being generic.
If you do so when the pattern cannot be generic, then
F# will issue warnings specifically point out any lines
of code which force the pattern to be of a more specific
type.

Another use of type annotation is to specify what a
named function’s output should be. When a function
is bound to a name, a Jtype annotation can be used
to indicate the type of the function’s generated value,
using the following syntax:

SYNTAX: FUNCTION OUTPUT TYPE ANNOTATION
let

:::::
ident i1 · · · in : outType = expr

Don’t go too crazy with type annotations, though.
F# is pretty good at figuring out what things are. Al-
low the compiler to figure it out and you’ll typically
end up with code that is constrained enough to be cor-
rect, while also being as flexible as possible.

“SOME” OR “ANY”?
When a type is parametrically polymorphic, it must
be substitutable by any concrete type, not just some
concrete types. The difference is subtle, but impor-
tant! For example, consider the following function:
let choice (x : ’a) (y : ’a) : ’a = x + y

Send this down to F# Interactive and you’ll see
the following warning: This construct causes code

to be less generic than indicated by the type

annotation, and F# infers that its type is actually
int -> int -> int. This occurs because the +

operator works for floats; it works for ints; it
even works for strings. So we know that it works
for some types, but it doesn’t work for any type, such
as bool. Accordingly, F# is unable to accept that it
is parametrically polymorphic, and defaults to what

it considers to be sensible.

TYPE ERRORS

By now, you’ve probably seen the dreaded error that
says:

This expression was expected to have type [. . .]
but here has type [. . .]

You get this error when F# thinks that you’ve used
an expression in a way that forces it to have more than
one type — and since this is impossible, one of the
ways that you’ve used it must contradict the other
way. The F# compiler is quite good at finding these
issues, so don’t immediately assume that it’s wrong!
Instead, try to fix the error.

To fix a type error, you need to do your own type
inference and verify that there’s no contradiction be-
tween your types. This is what functional program-
mers are mean when they say that the types in a sys-
tem must “line up”. Try following this process:

1. Start with a fresh F# Interactive session: reset it.

2. Add type annotations to every identifier in your
function. These will tell F# what you expect the
type to be. Send what you have down to F# In-
teractive, and note any errors or warnings. These
usually indicate where you can focus your atten-
tion.

3. Begin at the top of your function and continue
in a left-to-right fashion, paying special attention
to the places where F#’s type-checker has found
problems. As soon as you reach a contradiction,
you’re done! Fix the problem by removing the
contradiction.

4. If you can’t find the problem after a bit of
thought, then your function might be too large
to keep in your head. This sort of “debugging”
works best when you have small functions, so try
to break your functions into small pieces so that
you make your own life easier.

The above process is also useful whenever F#

seems to be inferring the type of a function or iden-
tifier incorrectly.

GENERIC COMPOSITE TYPES

Generic data structures — in other words, data
structures which contain one or more fields/-
cases which are parametrically polymorphic — can
be defined by specifying the existence of generic

TYPE THEORY 47

Jtype parameter(s) in angle-brackets after the type-
name in the type definition. These type parameters
should be present in the type definition.

SYNTAX: GENERIC RECORD DEFINITION
type

:::::
Name<’a,’b,· · · ,’z> = ↓{

↓
::::
field0 : type0

::::
field1 : ’a
...
:::::
fieldn : ’z
↓}

SYNTAX: GENERIC DISCRIMINATED UNION DEFINI-
TION
type

:::::
Name<’a,’b,· · · ,’z> =

|
::::
Case0 of type0...

|
:::::
Casen of typen

The type of of a generic record or discriminated
union is the name of the type, as parameterised by the
concrete types that replace the parametrically poly-
morphic variables. Two generic types are not consid-
ered to be the same type, unless both types are pa-
rameterised by comparable type parameters, and are
therefore not comparable. A type parameter x is com-
parable with a type parameter y if one of the following
conditions is true:

• x and y are the same concrete type.

• x is generic and y is a concrete type (or vice versa).

• x and y share the same generic type parameter.4

type Tree<’a> =

| Empty

| Node of ’a * Tree<’a> * Tree<’a>

let q = Empty

let r = Tree("moo", Empty, Empty)

let s = Tree(7, Empty, Empty)

Here we define a binary tree. It contains two cases:
an Empty case for when there’s nothing in a tree, and
a Node case that has a tuple consisting of the data
to be stored in the node and the “left” and “right”
sub-trees.
We then bind three identifiers: q is a Tree<’a>, r

is a Tree<string>, and s is a Tree<int>. We will be
unable to compare r and s, because the types are
different. We will, however, be able to compare q

to r and s. It will compare as being less-than either
of those because the Empty case is defined above the

4If you are comparing generic types, F# will restrict your
function to be usable only in cases when the concrete type —
supplied by calling code on a case-by-case basis — is com-
parable.

Node case.

OPTIONS AND RESULTS

One of most important built-in types is the Option<’a>

type, often referred to informally as the Option type:

type Option<’a> =

| None

| Some of ’a

You will find such a type in almost all functional
languages, although its name might differ. In a type
annotation, an Option<’a> can be written as ’a option.
An Option type is often used to explicitly indicate that
no value exists. In other languages, a null is used to
indicate that no value exists. An Option type is a better
choice than a null for the following reasons:

1. To extract a value from an Option type, a
programmer must explicitly pattern-match both
cases. If this is not done, then F# will display
a warning. The Option type therefore forces the
programmer to deal with the successful and un-
successful case, whereas it is easy to forget to deal
with the possibility that a value could be null.
Forgetting to deal with a null can lead to an er-
ror when a null value is used.

2. The Option type explicitly indicates to the pro-
grammer that a particular value may not be avail-
able. In all other cases, the programmer can as-
sume that a value will be available.

A variation of the Option type is the Result<’a,’b>

type, informally referred to as the Result type, defined
as

type Result<’a,’b> =

| Ok of ’a

| Error of ’b

Whereas the Option type allows you to explicitly ex-
press a value that may or may not exist — and, related
to that, whether a value-generating operation has suc-
ceeded or not — the Result type allows you to also ex-
press the kind of error which has occurred if a value
could not be created.

Since both Result and Option types are used to add
another layer of meaning to existing values, we some-
times call them Jwrapper types. You may hear a
functional programmer way that they’ve Jwrapped
a value in an Option, or Junwrapped a Result.

48 TYPE THEORY

EXERCISES

1. Write down the type of the following functions:

(a) fun p -> "quiz" + p

(b) fun p -> p + 600

(c) fun p -> fun r -> r-p

(d) fun p -> "quiz"

(e) fun p r -> p-r

(f) fun 8 -> 25.13

(g) fun status -> fun () -> status/2

(h) fun act -> act "boldly"

(i) fun i s -> s () - 10 * i

2. Write down the type of each of the following
functions.

(a) fun (d,a,e) -> d,e,a,d

(b) fun a p ->

match p with

| (_,3) -> a (p, p)

| a -> p

3. Study the following type.

type Circe<’a,’b> =

| Transform of (’a -> ’b) * string

| Die

Write down a pattern that matches the value
Transform (string, "int"), but does not match
Transform (int, "string").

4. You must make a system to track particular ani-
mals, which have been tagged for research pur-
poses, on a game farm. An animal has a species
(which is a string), a tag number (which is an inte-
ger), and a last-seen location (expressed as a lat-
itude and longitude, both of which are floating-
point values). An animal may have a research
note attached to it, or it may not.

(a) Define a record type, containing four fields,
which represents this.

(b) Create a lion with the tag 9177, last seen at
latitude 40.77, longitude -73.97, with no re-
search note attached to it.

(c) Write a function which will take an animal
and return a new animal with a research
note attached that says “Extremely Dancer-
ous”.

(d) Write a pattern (just the pattern!) which will
match an antelope and bind its tag number
to the identifier tagNo.

5. Write down the definition of the built-in
Option<’a> type.

6. The built-in function defaultArg has the type
’a option -> ’a -> ’a. Using only the type, fig-
ure out what it does.

7. The bind function has the type

(’a -> ’b option) -> ’a option -> ’b option

Write the function.

8. Study the following type which represents a node
in a linked list.

type Node<’a> =

| Nothing

| Next of ’a * Node<’a>

(a) Create an empty linked list.

(b) Create a linked list that holds the values
4.22, 1.9, and 0.45.

(c) Write a map function with signature
(’a -> ’b) -> Node<’a> -> Node<’b>

9. Assume that you have defined types as follows:

type Op<’a> = Success of ’a | Failure

type Parseable<’a> = {

Input : string

Parsed : Op<’a>

}

(a) The Parseable type requires a generic pa-
rameter. Why?

(b) What are the types of the following func-
tions? (Be careful — this is a bit trickier than
it might look!)

i. let success x v =

{x with Parsed=Success v}

ii. let success x v =

{Input=x.Input; Parsed=Success v}

(c) Explain the difference in function types.

50 TYPE THEORY

LISTS

A list is a singly-linked-list of elements, all of which
have the same type1. A list has a Jhead, which is
the first element of the list, and a Jtail, which are the
remaining elements of the list. The head is a value and
the tail is a list. A list may have zero or more elements.

SYNTAX: LIST CREATION
[expr0 ; · · · ; exprn]

To create a new list with an additional item at the
start, we can use the Jcons operator (::) with an ex-
pression and a list. The expression must generate a
value of the same type as the existing values in the
list.

SYNTAX: CONS
expr :: list

The type of a list with elements of type t can be
expressed either as t list or as List<t>. The former
syntax is preferred. If the type of the elements is not
constrained, then it can be generic; this means that a
list with a type like ’a list is common.

let a = [7;6;5]

let b = 83::a

Here we create a list containing the elements 7, 6,
and 5, and bind that list to the name a. We then
cons an element (83) to the list, thus creating a new
list, and bind the new list to b. Remember that lists,
like all data structures discussed here, are immutable;
therefore, a is still bound to [7;6;5] after b is bound
to [83;7;6;5].

The type of both of these lists is int list.

As a convenience, a list of integers between n and
m, where n < m, can be created using a special syntax.

SYNTAX: INT LIST CREATION
[n .. m]

1If you recall the differences between linked lists and ar-
rays, you might think that this makes functional lists “slow”
or that it makes them space-inefficient. In fact, functional
lists can be surprisingly performant and space-efficient; as
with many things in Computer Science, a lot of the magic is
in the implementation! See, for example, the following paper:
Bagwell, P., 2002, September. Fast functional lists. In Sym-
posium on Implementation and Application of Functional Lan-
guages (pp.34-50). Springer, Berlin, Heidelberg.

SYNTAX: LIST PATTERN
[p0 ; · · · ; pn]

Each pattern in the list pattern matches an element
of the list. The pattern will not match unless the num-
ber of elements in the list is the same as the number of
patterns in the list pattern.

SYNTAX: CONS PATTERN
head :: tail

The cons pattern matches the head of the list and
the tail of the list separately; the tail pattern can be
another cons pattern, or a list pattern.

[9;8;7;6;5]

The following patterns will all match the above list:
• [9;8;7;6;5]

• [p;8;_;q;_]

• h::[r;7;_;5]

• x::y::_

• _

• x::8::y::_::_::[]

Can you see why each pattern will match?

A new list can be created from two existing lists us-
ing the “concat” operator @. However, this operator
is much more inefficient than the cons operator and
should therefore be used less often.

SYNTAX: CONCAT
list0 @ list1

@ OR ::?
Adding an element to the start of the list (i.e. the
cons operation) is a very quick O(1) operation. How-
ever, concatenating lists using @ requires traversal of
the first list, making it a O(n) operation where n is
the length of the first list. It is therefore preferable
to use :: instead of @ whenever possible.

COMPARISON

If the elements in a list are comparable, then the list is
comparable to another list of the same type. Lists are
compared element-by-element, beginning from the
first element. As soon as one element is greater or less
than the corresponding element in the other list, a re-
sult is generated. If all items are the same, but one
list is longer, then the longer list is considered to be
“greater than” the shorter list.

52 LISTS

EXERCISES

1. Consider the following code:

let crow = 2

let beef = [1; crow; crow; 8]

let x = crow :: (beef @ beef)

(a) What is the value of beef?

(b) What is the value of x?

(c) Rewrite the beef binding so that it only uses
an empty list and the cons operator.

2. The clevva function is defined as follows:

let clevva smoke =

match smoke with

| [] -> 0

| [e;3] -> e

| _::_::e::_ -> e

| [p] -> p

| _::k::[] -> k

| _ -> 4

Evaluate the following expressions:

(a) clevva [5;3;7;1]

(b) clevva [9;2;5]

(c) clevva [8;6]

(d) clevva [0]

3. Your code contains the binding
let k::_::m = [0;4]. If the pattern match
will succeed, write down the identifiers and the
value associated with each bound identifier. If
the binding will not succeed, write down Pattern
match fails.

4. Assume that the following function is defined.

let tz (a::b::c::r) =

match a <= b, c with

| true, _ -> [c]

| _ -> r

(a) Evaluate: tz [10;8;6;4;2]

(b) Evaluate: tz [20;18;16;14;12]

(c) Evaluate: tz (tz [20;18;16;14;12])

5. Assume that the following function is defined.

let dino mite =

let rec dino saur bambi =

match saur with

| [] -> 4::bambi

| [_] -> 8::bambi

| x::t -> dino t (x+1::t)

dino mite [25]

(a) Evaluate: dino [1;3]

(b) Evaluate: dino []

6. Write down a list that will match the pattern
::::[6.0]::_.

7. Write down the type of each of the following
functions.

(a) fun dayS ->

dayS |> List.filter ((=) ’n’)

(b) fun a p ->

match p with

| [] -> a (p, p)

| a -> p

(c) fun art -> art::("sm"+art)::["heart"]

(d) let rec sweet ness acc =

match ness, ness>0 with

| 0, _ -> acc ness + 0.5

| _, false -> sweet -ness acc

| loch, _ -> sweet (loch-1) acc

8. If a pattern would match the value
5.3, "hi", (9, [9]), write the bound sym-
bols and their values. If the pattern match
succeeds but no symbols are bound, write Noth-
ing bound. If the pattern would not succeed, or
if it is invalid, write No match.

(a) 5.3, "hi", _

(b) hi, _, (_, _)

(c) this, is, a, test

(d) this, is, (a, bad::test)

(e) _, _, (w<10, x::_)

(f) so, "hi", (said, [i])

(g) _, (tess, ting)

9. Consider the following code.

let prefix = 2,1

let six = (prefix, 6), [prefix; 1,2], false,

prefix, 3

Write a pattern to...

(a) extract the first element from the list in six

and bind it to the identifier k

(b) extract the values 6 and 3 from six and bind
them to the identifiers six and e respectively

(c) extract all the 2 values from six, binding
them to identifiers of your choosing

10. The following record describes a mythical sea-
beast known as a Kraken.

type Kraken = {

Victims : string list

Age : int

Where : float * float }

(a) Create a Kraken that has killed two people
(Jason and Freddy, with Jason being placed
before Freddy), is 16384 years old, and can
be found at latitude -33.69 and longitude
26.68.

(b) Assume that your Kraken from (a) has been
created. Now look at the following patterns;
if a pattern will match your Kraken, write
down Y; if it won’t match, write down N;
and if it is an invalid pattern, write down
WTF. If a match is successful, also write
down any identifiers and the values that
they are bound to.

i. ["Jason"; "Freddy"]

ii. { Age=a }

iii. {Where=g}

iv. { Where=g,h }

v. {Victims=k}

vi. {Victims=j::f::k}

vii. {Victims=_::[]}

viii. { Victims=f::_ }

ix. { Victims=[_; _] }

x. { Age=16384; Victims=[j; f] }

xi. { Victims=[freddy, "Freddy"] }

xii. { Age=_, Where=(p,q) }

xiii. {Where=[-33.69; 26.68]}

xiv. ["Jason"; "Freddy"]; 16384; (lat,long)

xv. Age=a, Victims=v

xvi. {Age = 16384}

xvii. {Age = a>10}

xviii. {Victims=["Freddy"; "Jason"]}

(c) A record pattern in which a field is matched
by the wildcard pattern, such as {Age=_}, is
valid. However, a good programmer will
not write such a pattern. Why?

(d) The Where field should be interpreted as (lat-
itude,longitude), but could also be inter-
preted as (longitude,latitude). Define a Co-
ordinate record to make this unambiguous,
and write down a revised Kraken record
definition that makes use of it.

(e) Create a Kraken that contains the same in-
formation as in (a), using the definitions
you’ve created in (d).

(f) Some of the valid patterns from (b) must be
changed so that they continue to match the
new definition of Kraken. Identify only the
patterns that need to change and, for each
identified pattern, write down a changed
pattern that matches and binds the same
identifiers.

11. Consider the following just-for-practice code.

let prep t xs = t::(t+1)::xs

let strip (a,_,t) = a*t, t/3.0

let flow p =

match p with

| [] -> None

| (b,a)::_ -> Some (a + "," + a)

let rap x = fun () -> strip x

let flip q =

let t, next = q

(next, t, t) |> strip

let swatch (b,a) = a,b

Write down the type of:

(a) prep

(b) strip

(c) flow

(d) rap

(e) flip

(f) swatch

(g) swatch >> swatch

12. Circle all patterns which would match the value
Some 5, 7::[11], 9.0.

(a) Option _, _, v

(b) Some n, [_;_], _

(c) _, _::_::_, k

(d) _

(e) Option<int>, _::_, r

54 LISTS

USEFUL FUNCTIONS

System.Console.ReadLine ()
unit →

userinput
string

Reads in a string from the user.

int input
′a →

output
int

Creates an integer value based on the input.
Throws an exception if the input can’t be used to
create such a value.

float input
′a →

output
float

Creates a floating point value based on the input.
Throws an exception if the input can’t be used to
create such a value.

string input
′a →

output
string

Creates a string representation of the input.

STRINGS

To print data as a formatted string to the console, use
printf. To print data as a formatted string to the con-
sole with a trailing newline, use printfn. To create a
formatted string from data, use sprintf. All of these
take a C-style format string followed by the data to be
formatted.

sprintf "%d%c, %s %f%c? %b" 2 ’b’

"or not" 2.0 ’B’ true

The format string ("%d%c, %s %f%c? %b") is fol-
lowed by the values that are to be formatted and
placed in the string. The result is the string
2b, or not 2.000000B? true.

To print out a literal % character, use %% in the for-
mat string. The different format specifiers include:

%s for strings.

%i for ints.

%b for bools.

%f for floats. You can also write %.nf, where n is a
number, to indicate the number of decimal places
that should be printed.

%A for anything else. This pretty-prints F# data
types very nicely.

%O to call the .ToString() overload on a value, and
print the result.

The *printf functions are treated specially by F#: it
uses the format string to help it during type inference.

String.concat separator
string →

inputs
seq<string> →

output
string

Joins all the strings in inputs (which may be, for
example, a list of strings) into a single string, in-
serting separator between the joined elements in
the output.

CATASTROPHIC ERRORS

If a logic error occurs in the program, it is often best to
crash the entire program rather than return an invalid
result. The failwith function is very useful for this
purpose.

failwith error string
string → ignored

′a

Raises an exception, using the error string as the
exception message. If uncaught, this will crash
the program.

OPTIONS AND RESULTS

Option.map function
′a → ′b →

value
′a option →

result
′b option

If value is the None case, ignores function and re-
turns None. If it’s the Some case, then the value held
within it is unwrapped, passed to function, and
re-wrapped.

Option.bind function
′a → ′b option →

value
′a option →

result
′b option

Like Option.map, but the re-wrapping is done by
the higher-order function.

Option.iter function
′a → unit

value
′a option →

()
unit

If the value is Some, function is executed.

Result.map function
′a → ′b →

value
Result<′a,′c> →

result
Result<′b,′c>

If value is the Error case, ignores function and
returns the Error case. If it’s the Ok case, then
the value held within it is unwrapped, passed to
function, and re-wrapped.

A Result.bind function, analogous to the
Option.bind function but applicable to Results,
also exists.

LIST OPERATIONS

Several important, built-in functions make it easy to
express very powerful operations in a tiny amount of
code. Many of these functions are built into the vast
majority of functional languages, and their utility is
so widely acknowledged that they have been steadily
making their way into non-functional languages as

well. Knowing how to use them in F# will give
you transferable knowledge that you can use in non-
functional languages such as C#, Java, C++, Ruby,
and JavaScript, as well as functional languages such
as Haskell, Elm, Phoenix, and Erlang, among others.

In order of importance, you should know at least the
following operations:

List.map func
(′a → ′b) →

input
′a list →

output
′b list

Applies func to each element of input, returning
the resulting list.

List.filter tester
(′a → bool) →

input
′a list →

output
′a list

Returns a list containing only the elements for
which tester returns true.

List.fold combiner
(state

′a →
item
′b →

combined
′a) →

initial
′a → input

′b list →
output

′a

Uses the combiner on each element in turn to com-
bine all of the elements of input together into
a single value. The combiner starts by taking
initial and the first item of input, and using
them to generate an updated combined value. This
value is then used as the state for the next call
to combiner, until all the elements of input are ex-
hausted. The last-generated value becomes the
output.

This function will throw an exception if input is
empty.

List.exists tester
(′a → bool) →

input
′a list →

output
bool

Returns true if tester is true for any element of
the input.

List.mapi func
(index

int →
item
′a →

result
′b) →

input
′a list →

output
′b list

Like List.map, but passes the index of the ele-
ment as well as the value to func.

List.rev input
′a list →

output
′a list

Returns a list with the elements in the reverse or-
der.

List.find tester
(′a → bool) →

input
′a list →

output
′a

Returns the first element for which tester returns
true. This function will throw an exception if
input is empty.

List.init length
int →

generator
int → ′a →

output
′a list

Creates a list with with the desired length by call-
ing generator, passing it the index of each element
to be generated.

List.length list
′a list →

count
int

Returns the number of items in the list.

List.iter function
(′a → unit) →

input
′a list →

()
unit

Evaluates function for every element of the input.

List.iteri function
(int → ′a → unit) →

input
′a list →

()
unit

Like List.iter, but passes the index of the element
as well as the value to function.

List.partition tester
(′a → bool) →

input
′a list →

passed ∗ failed
′a list ∗ ′a list

Splits the input elements into two lists, passed and
failed, based on whether tester returns true or
false for a particular element.

List.zip one
′a list →

two
′b list →

combined
(′a ∗ ′b) list

Returns a list consisting of corresponding ele-
ments from one and two.

List.distinct original
′a list →

duplicates removed
′a list

Returns a list that does not contain any duplicate
elements.

List.ofSeq sequence
′a seq →

list
′a list

Returns a list that contains the same elements as
the sequence. Can be used to conveniently obtain
a list of chars from a string.

List.head input
′a list →

element
′a

Returns the first element in the input list. This
function will throw an exception if the list has no
elements.

List.tail input
′a list →

remaining
′a

Returns the input list without the first element.
This function will throw an exception if the list
has no elements.

List.tryFind tester
(′a → bool) →

input
′a list →

output
′a option

Returns the first element for which tester returns
true, or None if no such element exists.

List.choose func
(′a → ′b option) →

input
′a list →

output
′b list

Applies func to each element of input, including
the output value in the resulting list only if it is
not None. In other words, choose can filter and
map in a single pass through the list.

List.pick func
(′a → ′b option) →

input
′a list →

output
′b

Like List.choose, but only returns the first result.
This function will throw an exception if an appro-
priate element does not exist.

List.tryPick func
(′a → ′b option) →

input
′a list →

output
′b option

List List.pick, but uses an Option rather than
throwing an exception.

A complete list of list functions can be found at
https://goo.gl/72ZZub.

56 USEFUL FUNCTIONS

https://goo.gl/72ZZub

SEQUENCE FUNCTIONS

You can treat both strings and lists, among other
things, as sequences. The Seq module, in addition to
the functions mentioned below, contains many func-
tions that perform the same tasks as List functions
and have the same names as those functions.

Seq.head sequence
seq<′a> →

result
′a

Returns the first item in the sequence. If no such
item exists, an exception is thrown.

Seq.toList sequence
seq<′a> →

result
′a list

Creates a list from all the items in the sequence.

MATHEMATICAL FUNCTIONS

round input
float →

output
float

Rounds a fractional number to the nearest whole
number, preferring rounding towards even num-
bers instead of odd numbers whenever the frac-
tional component is exactly halfway between two
numbers.

floor input
float →

output
float

Rounds a fractional number to the nearest whole
number which is smaller.

ceiling input
float →

output
float

Rounds a fractional number to the nearest whole
number which is larger.

truncate input
float →

output
float

Removes the fractional component from a num-
ber.

min x
′a →

y
′b →

result
′a

Returns the smaller value, choosing between x

and y. This function works with any comparable
data types, including strings, ints, and floats.

max x
′a →

y
′b →

result
′a

Returns the larger value, choosing between x and
y. This function works with any comparable data
types, including strings, ints, and floats.

USEFUL FUNCTIONS 57

58 USEFUL FUNCTIONS

EXERCISES

1. The Result type would not be used by an opera-
tion such as choose. Why not?

2. Which is the best operation to use to achieve each
of the following results? (You may assume that
any data types which are named are defined suit-
ably; we’ll get to custom data types in the next
chapters)

(a) Finding the largest item in a list

(b) Finding all the negative numbers in a list

(c) Getting the length of each word in a list

(d) Checking whether any of the lists in a list is
empty

(e) Creating space-filled strings with increasing
lengths from 1 to 50 characters.

(f) Dividing a class of Students into those who
have more then 50%, and everyone else

(g) Finding a Car with the lowest price in a list
of Cars

(h) Numbering each line of code in a list of
code-lines

(i) Writing all the lines of text in a list into a file

(j) Determining whether any Student has
achieved more than 75%

(k) Concatenating all the strings in a list to-
gether into one string

(l) Convert a list of strings into a list of
BumperStickers

3. The scan variant of fold has the type

(’a -> ’b -> ’a) -> ’a -> ’b list -> ’a list

Use this information, and your knowledge of
what fold does, to work out what scan does.

4. The reduce variant of fold has the type
(’a -> ’a -> ’a) -> ’a list -> ’a. Use this
information to work out the condition under
which it will fail.

60 USEFUL FUNCTIONS

FUNCTIONAL TECHNIQUES

Higher-order functions and closures are two tech-
niques that are commonly used in functional pro-
gramming. This section takes you through the gen-
eral idea of these techniques and describes situations
in which they are useful.

HIGHER-ORDER FUNCTIONS

A Jhigher-order function accepts a function as input.
Higher-order functions are not “special”; they exist as
a consequence of the decision to make functions first-
class. The flexibility and expressive power of higher-
order functions is remarkable: they allow us to build
functions which express a general algorithm, and pass
in the specific functionality on a case-by-case basis.

let twice f v = f (f v)

let add4 x = x + 4

twice add4 10

In this toy example, the function add4 is applied twice
to the value 10. The twice function is a higher-order
function.

CLOSURES

Recall from page 15 that a function is evaluated in the
context of the code that it is defined in, not the scope
that it is applied in. If we have a way to delay function
execution until later, then we can have the function
“carry” its defining environment with it as it goes.

The usual way to delay function execution is by
pattern-matching on a unit input.

let subtractor a b =

fun () -> a - b
...

let to_execute = subtractor 17 5
...

let v = to_execute ()

The lambda function is defined, bound to a name
(to_execute), and evaluated at different places in the
program. The lambda function “carries” the context
of its definition with it.

A function which uses identifiers in its defining
scope in addition to its input is called a Jclosure; we
say that it “closes over” or “captures” such identifiers.

62 FUNCTIONAL TECHNIQUES

EXERCISES

1. Briefly define type inference.

2. Write down the type of the following functions:

(a) fun toi -> fun tli kea -> "toiger"

(b) fun apple (bake : float) ->

apple-bake

(c) fun sugar cake ->

sprintf "Sugar: %b" sugar

(d) let super duper = duper

(e) fun titan fall ->

(fall+8) |> titan

|> sprintf "%f"

(f) let koan yin yang : bool =

sprintf "%f" yang |> yin

(g) fun x y z -> (y >> x) z

(h) fun x y -> y x

(i) fun k p -> p k "5"

(j) fun t ->

match t with

| ’R’ -> fun a -> a

| _ -> fun _ -> 35

(k) fun k -> (k >> k) ()

(l) let twilight a v =

let s = a

let t = v 4

let issue name =

sprintf "%c %d : %A" s t name

issue

(m) fun p -> "quiz"

(n) fun act -> act "boldly"

3. Write down the word or phrase that means...

(a) “A function which can reference variables
that exist within the lexical scope of its defi-
nition”

(b) “A function that takes a function as input”
(c) “Single-input, single-output functions

which are chained to emulate the multiple-
input functions which exist in other
languages”

4. (a) Write a function
log: string -> (unit -> ’a) -> ’a

which prints the input string before the
function is executed.

(b) Here is an existing line of code:
fly 300 12.4

Modify this line of code so that it uses your
function to log the message “Flying now”
before executing the code.

(c) Explain why the modification that you
made cannot possibly change the change the
meaning of the program.

64 FUNCTIONAL TECHNIQUES

TUTORIAL

In this tutorial, we’ll be using recursion, generic
types, and lists. We’ll also be using almost every fea-
ture that we’ve covered so far, so this is a great tutorial
for understanding how features in the language work
together.

Recursive functions can often be used effectively
with recursive types. We’ll create a recursive generic
binary search tree data structure and throw in a few
tree operations to give it a workout. This part of
the tutorial is slightly more difficult to grasp, so you
might want to have a paper & pen ready to sketch out
some binary trees and check for yourself that every-
thing works. You might also want to have a quick
look online, or consult some past study notes, so that
you can remember how binary search trees work.

1. We can start with this definition of a binary tree:

type Tree<’a> =

| Empty

| Node of ’a * Tree<’a> * Tree<’a>

Each child of a binary tree is, of course, a binary
tree itself! A tree might be empty, or it might store
some data and two children.

2. We want to insert things into the tree, so let’s cre-
ate an insert function. Remember that this is go-
ing to be a search tree, so we want things to be
inserted in the correct order.

let rec insert v tree =

match tree with

| Empty -> Node (v, Empty, Empty)

| Node (x, l, r) ->

match v = x with

| true -> tree

| false ->

match v < x with

| true -> Node (v, insert x l, r)

| false -> Node (x, l, insert v r)

If the tree is empty, we just add in a new node
with some empty sub-trees. When the tree isn’t
empty, we need to look at the value of the node
(which extract by binding it to x). If we’ve al-
ready got this value in the tree, we don’t need to
store it again, so we check for equivalent values
as we go. If the value we’re inserting is less than
x, then we create a new node that contains this
value, and we push the old value down through
the left sub-tree via a recursive call. However, if
the value we’re inserting is greater than x, then
we create a new node that has this node’s value,
and pushes the new value down though the right
sub-tree via a recursive call.

Remember that we are not “updating” or “mutat-
ing” the tree in any way here! It is impossible to

update or mutate when you’re working with im-
mutable values, as is the case here. Instead, we
are creating new nodes as we go1. Note, also, the
type of this function as we pass it down to F#

Interactive: it can handle any kind of values, as
long as they are comparable.

3. We expect the nodes to be inserted in the correct
places in the tree. It would be convenient to be
able to take a walk through the tree, pulling out
all the values, and seeing whether a walk through
the tree actually does give us the expected order.
To do this, we can create a function to take a tree
and give us its string representation after in-order
traversal (i.e. Left-Node-Right / LNR traversal).

Creating a string form for the tree is going to be
slightly tricky because Node cases will have their
data represented in the string, and Empty cases
won’t be in the string at all. Each piece of data
should be separated by a space. We’ll start from
the tree root and we’ll integrate strings from sub-
trees into our tree. However, we won’t know in
time whether a sub-tree is Empty or Node, so we
won’t be able to tell whether we should insert it,
followed by a space, before we visit it. To see this
problem, try playing with this function:

let rec toStringA tree =

match tree with

| Empty -> ""

| Node (v, l, r) ->

let ls, rs = toStringA l, toStringA r

sprintf "%s %A %s" ls v rs

Notice what it prints out for the tree
insert 4 Empty. Can you see why the prob-
lem occurs?

We’ll implement three different approaches to
solving the issue. Each approach will teach you
some different tricks, so implement both. Our
first approach is to observe that the problem oc-
curs because we can’t see which sub-node val-
ues are empty, and which aren’t. But we can ex-
plicitly indicate which ones are empty by using
Option values...

let toStringB tree =

let rec toStringB tree =

match tree with

| Empty -> None

| Node (v, l, r) ->

match toStringB l, toStringB r with

| None, None ->

Some <| sprintf "%A" v

| None, Some x ->

1This not as expensive as it sounds because modern func-
tional languages find ways to share common data between
structures.

Some <| sprintf "%A %s" v x

| Some x, None ->

Some <| sprintf "%s %A" x v

| Some x, Some y ->

Some <| sprintf "%s %A %s" x v y

match toStringB tree with

| None -> ""

| Some s -> s

Here we explicitly represent the difference be-
tween a value that can be placed within the string
and a value which doesn’t have a viable string
representation. As a result, we can pass back
viable or non-viable values from our recursive
calls, check for them, and choose to execute the
appropriate code.

However, all of this presents us with a problem:
we want the type of toStringB to be Tree -> string,
but it’s actually Tree -> string option. We’ll use
a little trick to fix this: create an inner function
(also named toStringB here) which does the ac-
tual work, and then “unwrap” the results of that
function and pass it out.

Push this down to F# Interactive and see play
around with it using a simple tree such as

insert 4 Empty |> insert 5 |> insert 1

|> insert 3

4. Our second approach also starts by observing
that the problem occurs because we can’t see
which sub-node values are empty, and which
aren’t ... or can we? After all, we only ever need
to look one level deeper than we are. Patterns al-
low us to deconstruct values of arbitrary depth.
So let’s try a pattern-matching solution.

let rec toStringC tree =

match tree with

| Empty -> ""

| Node (v, Node _ as a), (Node _ as b)) ->

let x, y = toStringC a, toStringC b

sprintf "%s %A %s" x v y

| Node (v, (Node _ as a), Empty) ->

sprintf "%s %A" (toStringC a) v

| Node (v, Empty, (Node _ as a)) ->

sprintf "%A %s" v (toStringC a)

| Node (v, Empty, Empty) ->

sprintf "%A" v

Note that this solution is shorter and arguably
clearer than the toStringB solution. You will find
that solutions that leverage pattern-matching are
often shorter and clearer, so learning to think in
terms of patterns and the “shape” of data is a
valuable skill to learn.

5. Our third approach is to break the problem
down. We want to get the nodes; we want to con-
vert them to strings; and we want to merge them
into a final string such that they have spaces be-

tween them. Let’s see if we can make functions
to do each of those things.

let rec toList = function

| Empty -> []

| Node (v, l, r) ->

toList l @ (v :: toList r)

The toList function simply traverses the tree in
LNR order, creating a list of values as it goes.
Send it down to F# Interactive and play around
with it, perhaps using the same simple tree that
you created in (3). Trace through the code and
understand exactly why it gives you the output
that it does.

Then we’d like to convertlast each of the node
values into a string. This is exceptionally easy.

let stringifyList x =

List.map (sprintf "%A") x

Lastly, we want to put a space between each of
the string values. There’s a built-in function, de-
scribed in these notes, that can help us with that:
String.concat. So let’s tie it all together with this
function:

let toStringD x =

toList x |> stringifyList

|> String.concat " "

A one-line function — wow! And as a bonus, we
now have a generally useful function, toList, that
we can use to convert any tree to an ordered list.
This an even better result than pattern-matching
was able to give us. All of the functions are so
small that errors in them should be very easy to
spot. We often get this kind of excellent result
when we break the problem down into steps, be-
cause each step (or a few steps) can often be en-
coded as a function, and functions can then be
composed together.

TYPE INFERENCE/
The careful reader will have noted that we could
have made the stringifyList and toStringD func-
tions even shorter. For example, stringifyList could
have been written as
let stringifyList = List.map (sprintf "%A")

and toStringD could have been written as
let toStringD =

toList >> stringifyList

>> String.concat " "

However, F# Interactive’s type inference isn’t good
enough to figure out what these types should be,
and a more complex explicit type would have to be
written to make it all work. A different functional
language with better type inference — or an untyped
language — would have no trouble with the shorter
code.

66 FUNCTIONAL TECHNIQUES

6. For debugging purposes, we might want to print
the tree’s values in LNR order, while not affecting
the tree itself in any way. Fortunately, this is now
exceptionally easy to do.

let debug tree =

printfn "%s" (toStringD tree)

tree

7. We can insert things. How about finding whether
a particular value is in a tree?

let rec query v tree =

match tree with

| Empty -> false

| Node (x, l, r) ->

let queryMore () =

match v < x with

| true -> query v l

| false -> query v r

x = v || queryMore ()

Here we use shortcut boolean evaluation to either
continue querying down the tree, or stop query-
ing and return true. It’s particularly important to
realize that the difference between function defini-
tion and function application is particularly impor-
tant here: we’ve defined the queryMore function,
but the code within it won’t be executed until —
and unless! — we apply it. This ensures that the
query function does the least possible amount of
work to find a value.

(Incidentally, we can’t use the boolean evaluation
trick in queryMore, e.g. by replacing the body with

(v < x && query v l) || query v r

Can you see why?)

8. How about a function that allows us to merge bi-
nary trees together? This is easier than it looks:
we can just take the first tree, get its values,
and then push those into the second tree. How-
ever, before we begin to write code, let’s think
about what we already know about functional
programs: they typically build larger functions
out of smaller functions. Do we have a function
to “take a tree and get its values”? Yes, we do: it’s
toList. Do we have a function to “push a value
into a tree”? Yes, we do: it’s insert. So we already
have the building blocks for making a new func-
tion. We just have to figure out how to tie them
together.

We’ll want to take the first value and insert it into
the second tree, and take the result of that inser-
tion and use it to insert the second value, and take
the result and use it to insert the third value, and
so on. If you know your operations well, you’ll
immediately recognize that this is a fold opera-
tion!

let merge a b =

toList a

|> List.fold (fun t v -> insert v t) b

Once again, a simple one-line function gives us
the complex operation that we want.

9. We can add things to the tree, and we can check if
an item is in the tree; but we can’t remove things
yet. Let’s make a function to do that. In fact, let’s
extend ourselves a little bit here: we won’t make
a simple remove function, we’ll make a filter op-
eration for our trees. Just like a List’s filter,
we will pass through a function that determines
whether a node should be kept or not.

let rec filter f = function

| Empty -> Empty

| Node (x, l, r) ->

match f x with

| true -> Node (x, filter f l, filter f r)

| false -> merge (filter f l) (filter f r)

If the function f determines that we should keep
this node, then we keep it and run the filter on
each sub-tree. If we’re not keeping the node, then
we ignore the node’s value and merge the left and
right sub-trees of the node instead.

EXTENSIONS

1. Can you implement a remove operation for a tree,
which removes a particular value? There are
many ways to do this. Can you find the way
which is...

(a) ...the shortest, in terms of lines of code?

(b) ...the most efficient?

2. If we try to turn a sorted list into a binary tree,
we’ll end up with a very deep tree — essentially,
our tree will be a glorified linked list. This is be-
cause our tree isn’t self-balancing. How difficult
would it be to convert our binary tree into a self-
balancing 2-3 tree2?

2https://en.wikipedia.org/wiki/2-3_tree

TUTORIAL 67

https://en.wikipedia.org/wiki/2-3_tree

68 TUTORIAL

LAMBDA CALCULUS

Let’s take a break from the practical stuff, and delve
into the theory behind functional programming. It
should now be clear to you that, in F#, it is possible
to do any computation that you could do in any other
language. You have already learned other languages,
such as C# and C and SQL, but F# can be much more
difficult to pick up than other languages that you’ve
learned. Why? What makes it so weird?

One answer to this is found in the roots of the lan-
guage. You already know that imperative languages
such as C are, in a very real sense, just implemen-
tations of a Turing machine. A Turing machine ma-
nipulates symbols on a tape, following a predefined
set of rules; an imperative language manipulates vari-
ables in memory, following a programmer-defined al-
gorithm. Functional languages don’t use the Turing
machine model of computation; instead, they all share
a common ancestor in the equally powerful, and of-
ten more expressive, Jlambda calculus. For a student
who has only ever encountered one way of looking
at the world of programming — as if it is all about
slightly different Turing machines! — this can be a
mind-blowing experience.

“HOW” VS “WHAT”
In the Turing machine model, we often end up saying
how we want to do things: declare an output array,
loop through an input array, set the variable at each
index of the output array, return the output array. In
the lambda calculus model, we often end up saying
what we want done: map these values using this
transformation. The result is the same, but you need
to change your way of looking at the problem to be
able to solve it functionally!

BASICS

There are only two things in the lambda calculus, both
of which are expressions:

• Variables. These are typically written as single
letters, such as a or b or z.

• Functions. These are written as an input vari-
able, a dot, and an output expression; for exam-
ple, λx.x. We say that the input variable is bound
in the output expression.

The only operation that is permitted in the lambda
calculus is left-associative function application, which
is shown by separating the function from its input us-
ing a space. Function application, of course, is noth-
ing more than β-reduction! Different functions can
bind different variables which happen to have the

same name. When a bound variable has the same
name as a free variable, we tend to rename the bound
variable to make it clear that they are different. For
example,

λx.λy.(x y) a = λy.(a y)

Using only variables, functions, and β-reduction,
we can express any computation.

TRUE AND FALSE

Computer scientists have a tendency to think in bi-
nary ways: true/false, on/off, yes/no, 1/0. What
good can a programming abstraction be, if we cannot
define the constants “true” and “false”? It turns out
that we can define them — as functions.

• true is λx.λy.x

• false is λx.λy.y

We can go on to define all of the usual boolean op-
erations using functions, too.

• and(x,y) is λx.λy.(x y (λa.λb.b))

• or(x,y) is λx.λy.(x (λa.λb.a) y)

• not(x) is λx.(x (λa.λb.b) (λc.λd.c))

If all of the above really does work out, then we
should be able to evaluate simple boolean expres-
sions! Let’s see if we can do that. We’ll evaluate
the expression and(not(false),true), and see if we
get the desired output true. We begin by phrasing
the expression using the lambda calculus definitions
that we’ve got above, and renaming bound variables
so that they don’t conflict.

λx.λy.(x y (λa.λb.b))

((λt.(t (λh.λi.i) (λc.λd.c))) (λu.λv.v)) (λj.λk.j)

=λy.(((λt.(t (λh.λi.i) (λc.λd.c))) (λu.λv.v)) y

(λa.λb.b)) (λj.λk.j)

=((λt.(t (λh.λi.i) (λc.λd.c))) (λu.λv.v)) (λj.λk.j)

(λa.λb.b)

=(λu.λv.v (λh.λi.i) (λc.λd.c)) (λj.λk.j) (λa.λb.b)

=(λv.v (λc.λd.c)) (λj.λk.j) (λa.λb.b)

=λc.λd.c (λj.λk.j) (λa.λb.b)

=λd.(λj.λk.j) (λa.λb.b)

=λj.λk.j

PRACTICAL IMPACT

Nobody programs in lambda calculus; then again, no-
body programs on a pure Turing machine, either. So,
why should we learn about it? We study the basis of
computation for at least two reasons:

1. By learning the underlying theory, we can under-
stand the commonalities between different lan-
guages which implement the same paradigm.
You may never have programmed in Haskell,
Ocaml, or Phoenix — but because you know that
they are based on the lambda calculus, you now
also know that they must have first-class func-
tions which are β-reducible. There are certain
principles that are described in the introduction.
By understanding lambda calculus, you also un-
derstand why these principles are a necessary
part of functional programming; and you are in
a much better position to understand certain fea-
tures of other functional languages, such as lazy
evaluation, without as much struggle.

2. Understanding the theory on a deep enough level
will broaden your mind and make you capable
enough to tackle larger and larger problems, and
able to apply existing tools more creatively. In
other words, a bit of reflection will go a long way
towards making you a better programmer.

70 LAMBDA CALCULUS

ANSWERS

PAGE 7
1. It means that the value that the variable is linked

to cannot be modified/updated/changed.

2. Expressions generate values. Statements do not.

3. A function is a value which accepts only one in-
put and, when this is supplied, evaluates an ex-
pression to generate exactly one output.

4. A pure function has no side-effects, and will al-
ways generate the same output when given the
same input.

5. (a) Yes. It will always generate the same result
when given the same input, and it has no
side-effects.

(b) No. It has the side-effect of writing some-
thing to the screen.

(c) No. It has the side-effect of modifying its
parameter. The fact that modification of the
parameter might not occur is irrelevant; the
potential for it to occur is present.

(d) Yes. It will always generate the same re-
sult when given the same input. Although it
modifies g and v during execution, this does
not count as a side-effect because it is not ex-
ternally observable, nor does it modify any-
thing outside the function. Remember that
ints are value-types, and changes made are
therefore local to the method.

(e) Yes. It will always generate the same result
when given the same input, and it has no
side-effects.

6. A variable can be replaced by the value it holds at
any point, without changing the meaning of the
program. (or: a name, once linked to a value, will
always have that value.)

7. A first-class function can be used in any context
that a value can be used.

8. Referential transparency is about the unchange-
ability of the link between a name and a value;
immutability is about the unchangeability of val-
ues.

9. Side effect.

PAGE 13
1. Any 3 of:

• Assignment can’t fail, pattern-matching can.

• Pattern-matching doesn’t necessarily bind
any identifiers.

• Assignment makes a copy; binding doesn’t.

• Re-bound identifiers are shadowed, not up-
dated.

2. a = b

3. (a) let a = "hi"

"zoot"

(b) let b = "zoo"

"zooty" + b

(c) let c = 7.5

let d = 34

c + 0.2

(d) let e = 8

let f = e

let e = 20

let g = 3

e+f+g

4. Pattern-matching determines whether a particu-
lar pattern and a particular value are compatible
or not. Binding links an identifier with a value.

5. (a) No. The only way to bind to an identifier is
via a pattern, and _ is the wildcard pattern
which does not bind any identifier. There-
fore, _ cannot be a valid identifier name.

(b) Yes.

(c) Yes. A ’ in a name is legitimate.

(d) No. This is a string.

(e) Yes. Any sequence of characters within
double-backticks is a valid identifier.

(f) No. An identifier cannot start with an @

character — unlike in C#.

(g) No. An identifier cannot be a reserved word
in the language.

(h) Yes. Any sequence of characters within
double-backticks is a valid identifier.

6. A shadowed identifier continues to exist and re-
mains linked to the same value that it was ini-
tially bound to. It cannot be accessed using the
shadowed name within the scope of the shadow-
ing. The value linked to an updated or mutated
symbol is overwritten and the old value is lost.

7. Identifiers are bound to values, not to expressions.
This means that r.Next() is evaluated once and
the resulting value is bound to v1. On the last
line, v1 is evaluated, and the resulting value is
bound to v2. This why the values are always the
same.

8. (a) C

(b) I

(c) O

(d) C

(e) C

(f) W

(g) C

(h) O

(i) I

(j) I

(k) C

(l) I

(m) O

(n) C

9. (a) 3. Or pattern.

(b) 3. Or pattern.

(c) 7. The type expected by one of the alterna-
tives in the or-pattern is not the same as the
type expected by the other two alternatives.

(d) 7. Both sides do not bind the same set of
identifiers.

(e) 7. A “-” sign in the middle of an identifier is
not allowed.

(f) 3. Identifier pattern.

(g) 7. A reserved word cannot be used as an
identifier.

(h) 7. An identifier cannot start with an apos-
trophe.

(i) 7. Both sides do not bind the same set of
variables.

(j) 3. Identifier pattern.

(k) 3. Identifier pattern. (look closely – it’s two
underscores, not one!)

PAGE 19
1. β-reduction is the process of substituting a func-

tion input with a value, resulting in a simpler ex-
pression.

2. (a) "hunter2 killer"

(b) (fun r -> r > 16)

(c) 2

(d) fun () -> 12

(e) 7.5

(f) 7

(g) 19

(h) fun h -> "I see " + h

(i) fun h -> h "see dog"

3. (a) string -> string

(b) int -> int

(c) int -> int -> int

(d) int -> int -> int

(e) int -> float

(f) int -> unit -> int

(g) int -> (unit -> int) -> int

4. • let k = fun m t -> t*3

• let k m t = t*3

5. (a) Using a two-input operator before the
operands instead of between the operands,
by enclosing it in brackets.

(b) Currying is the technique of simulating a
multi-parameter function by sequentially
returning different single-parameter func-
tions.

(c) A lambda function is a function that has not
been bound to a name.

PAGE 25
1. (a) A match expression never compares values;

it can only match patterns. The x is eval-
uated and results in the value 5. We at-
tempt to match this value to the pattern y;
this succeeds and 5 is bound to y, shadow-
ing the earlier binding of y. The correspond-
ing expression y+1 is executed, resulting in
the value 6. This value is the result of the
match expression, and is bound to z.

(b) Code which binds an identifier, but doesn’t
use it, is more difficult to understand. It
forces a programmer to use up some mental
space to remember the binding. A wildcard
pattern succeeds but doesn’t bind anything,
so there is no additional binding for the pro-
grammer to remember.

(c) match x=y with

| true -> y+1

| _ -> 12

2. (a)-(b) let "hazmat" =

match 901 with

| 201 -> "wut"

| kray -> "lol"

| 901 -> "hazmat"

(c) "lol"

3. (a) 1.2

(b) 0.4

72 ANSWERS

(c) No. F# does not allow the mixing of differ-
ent types, nor does it implicitly cast one type
into another.

(d) No. An int constant pattern cannot be used
to match against a float value.

4. (a) "evens"

(b) 1, 3, or 5

(c) A MatchFailureException would occur.

5. (a) "Codd"

(b) No. Mapping function syntax only allows
you to match on exactly the input that is
passed in. You would be unable to use the
% operator to generate the value that needs
to be matched.

PAGE 33
1. An accumulator solves the problem of having

any relevant information, which is still useful for
computing with, remaining in the previous stack
frame and being lost in a tail recursive call.

2. The recursive function would continue to recurse
forever, or (if it is not tail recursive) until it runs
out of stack space or reaches the maximum func-
tion call depth.

3. This is a recursive call after which there is no
work that remains to be done in the calling func-
tion.

4. (a) let numOdd start ‘‘end‘‘ =

let rec count n =

match n>=‘‘end‘‘ with

| true -> 0

| _ ->

match n%2=1 with

| true -> 1 + count (n+1)

| _ -> count (n+1)

count start

(b) let nextMul start n =

let rec count v =

match v%n = 0 with

| false -> count (v+1)

| _ -> v

count start

(c) let isPrime n =

let rec check v =

match v>1 with

| false -> true

| _ ->

match n%v=0 with

| true -> false

| _ -> check (v-1)

check (n-1)

PAGE 41
1. (a) _,t

(b) _,a,(_,(_,b))

(c) Yes.

(d) _,3 and _

(e) _, 9.0,_,_ and b,_,(a,_)

2. 3,13

3. (a) bool * string -> int -> int

(b) bool -> string * int -> int

4. The unpacking of components of a data structure
via pattern-matching of the data structure’s struc-
ture, with the option to bind to selected values
after a successful pattern-match.

5. (a) type XYZ = {

X : int

Y : int

Z : int

}

(b) {Y=guyver}

6. (a) Circle 100

(b) Rectangle (5, 8)

(c) Blob

(d) i. N
ii. Y

iii. Y
iv. N
v. Y. height is 5, and size is 8.

vi. WTF
vii. WTF

viii. WTF
ix. N
x. WTF

xi. WTF
xii. Y

xiii. N

7. type Seat =

| Unsold

| Sold of string

| VIP of int

8. (a) Full 50

(b) Full _, _ and Full empty

(c) { Name="Severus Snape"; Height=1.89

Drink="Pumpkin juice", Empty }

(d) {Name="Severus Snape"}, {Name=_},
{Name=n; Height=h; Drink=d},
{Height=h; Name=me}, {Drink=_} and
{Drink=(s,Empty)}

ANSWERS 73

9. It allows the programmer to pass back some data
that can help to diagnose or explain the error that
has occurred.

10. type Variety =

| Ceylon | Rooibos | EarlGrey

type Strength =

| Weak | OK | Strong

type Heat = Hot | Iced

type Spoons = Sugar of int

type Drink =

| Tea of Variety * Heat

| Coffee of Strength * Spoons * Heat

| Juice

11. (a) type Customer = {

Name : string

CCN : string

}

type Status =

| Unavailable of string

| Booked of string

| Available

| Occupied of Customer

type Room = {

Number : int

Status : Status

}

(b) { Number=11

Status=Booked "Frank Talk" }

(c) let n="5555-4325-1836-0019"

let cust = {Name="Banksy"; CCN=n}

{Number=16; Status=Occupied cust}

(d) {Number=909; Status=Available}

(e) List.map (fun x ->

match x.Status with

| Available | Booked _ ->

{x with Status=Booked

"Lord Voldemort"}

| _ -> x

)

PAGE 49
1. (a) string -> string

(b) int -> int

(c) int -> int -> int

(d) ’a -> string

(e) int -> int -> int

(f) int -> float

(g) int -> unit -> int

(h) (string -> ’a) -> ’a

(i) int -> (unit -> int) -> int

2. (a) ’a * ’b * ’c -> ’a * ’c * ’b * ’a

(b) ((’a * int) * (’a * int) -> ’a * int) -> ’a

* int -> ’a * int

3. Transform (_, "int")

4. (a) type Animal = {

Species : string

TagNo : int

LastSeen : float * float

Note : string option

}

(b) { Species="Lion"

TagNo=9177

LastSeen=40.77,-73.97

Note=None }

(c) let f a = {a with Note=Some "Extremely

Dancerous"}

(d) {Species="Antelope";TagNo=tagNo}

5. type Option<’a> =

| Some of ’a

| None

6. defaultArg takes an ’a option and a ’a value. If
the ’a option is None, then the provided ’a value
is returned; otherwise, the value wrapped in the
’a option is returned.

7. let bind a b =

match b with

| Some x -> a x

| None -> None

8. (a) Nothing

(b) Next(4.22,

Next(1.9,

Next(0.45,Nothing)))

(c) let rec map f x =

match x with

| Nothing -> Nothing

| Next(v,next) ->

Next (f v, map f next)

9. (a) The Op type requires a type parameter, and
cannot be included without one. Conse-
quently, any type that embeds an Op type
must either be defined with such a type pa-
rameter that it then passes to Op, or it must
pass a concrete type to Op as its type param-
eter.

(b) i. Parseable<’a> -> Parseable<’a>

ii. Parseable<’a> -> Parseable<’b>

(c) The first function uses a copy-and-update
expression. Such an expression will always
return the same type that it is given. Newly
generated records that do not use copy-and-
update are not subject to the same restric-
tion.

74 ANSWERS

PAGE 53
1. (a) [1;2;2;8]

(b) [2;1;2;2;8;1;2;2;8]

(c) let beef = 1::crow::crow::8::[]

2. (a) 7

(b) 5

(c) 6

(d) 0

3. k is 0 and m is [].

4. (a) [4; 2]

(b) [14; 12]

(c) A MatchFailureException is thrown; the pat-
tern a::b::c::r does not match the input
[14; 12].

5. (a) [8; 2; 3]

(b) [4; 25]

6. [[1.0];[];[6.0];[8.0;3.5]]

7. (a) char list -> char list

(b) ((’a list * ’a list) -> ’a list) -> ’a list

-> ’a list

(c) string -> string list

(d) int -> (int -> float) -> float

8. (a) Nothing bound

(b) hi is 5.3

(c) No match

(d) this is 5.3; is is "hi"; a is 9; bad is 9; test is
[].

(e) No match. (the pattern is invalid!)

(f) so is 5.3; said is 9; i is 9.

(g) No match

9. (a) _,k::_,_,_,_

(b) (_,six),_,_,_,e

(c) ((q,_),_),[w,_;_,e],_,(r,_),_

10. (a) { Victims=["Jason";"Freddy"]

Age=16384; Where = -33.69, 26.68}

(b) i. N
ii. Y. a is 16384.

iii. Y. g is -33.69,26.68

iv. Y. g is -33.69, and h is 26.68.
v. Y. k is ["Jason";"Freddy"].

vi. Y. j is "Jason", and f is "Freddy", and k is
[].

vii. N
viii. Y. f is "Jason".

ix. Y
x. Y. j is "Jason", and f is "Freddy".

xi. Y. freddy is "Jason".
xii. Y. p is -33.69, and q is 26.68.

xiii. N
xiv. WTF
xv. WTF

xvi. Y
xvii. WTF

xviii. N

(c) A record pattern only needs to specify the
fields which must match and/or the fields
to which one wishes to bind identifiers; the
other fields are not considered during the
matching process. A wildcard pattern al-
ways succeeds, but never binds an identifier.
Therefore, specifying a wildcard pattern for
a field is always unnecessary; it has the same
effect as not specifying that field at all.

(d) type Coordinate = {

Lat : float

Long : float }

type Kraken = {

Victims : string list

Age : int

Where : Coordinate }

(e) { Victims=["Jason";"Freddy"]

Age=16384

Where={Lat= -33.69; Long=26.68}}

(f) iv. { Where={Lat=g; Long=h} }

xii. {Age=_;Where={Lat=p; Long=q}}

or: {Where={Lat=p; Long=q}}

11. (a) int -> int list -> int list

(b) float * ’a * float -> float * float

(c) (’a * string) list -> string option

(d) float * ’a * float -> unit -> float * float

(e) float * float -> float * float

(f) ’a * ’b -> ’b * ’a

(g) ’a * ’b -> ’a * ’b

12. Some n, [_;_], _, _, _::_::_, k and _

PAGE 59
1. choose is only interested in the successful case (OK,

in the case of the Either<’a,’b> type), so it has no
need for any diagnostic information that would
be passed back with the diagnostic case. There-
fore, the Option type would be a semantically su-
perior choice for this operation.

2. (a) fold

(b) filter

ANSWERS 75

(c) map

(d) exists

(e) init

(f) partition

(g) fold

(h) mapi

(i) iter

(j) exists

(k) fold

(l) map

3. Like scan, but returns a list of the intermediate
outputs as well.

4. It will fail when the list is empty. In this case,
there is no possible way that the function can gen-
erate a ’a value.

PAGE 63

1. Type inference is the process of determining the
type of an identifier based on the context and con-
tent of surrounding code.

2. (a) ’a -> ’b -> ’c -> string

(b) float -> float -> float

(c) bool -> ’a -> string

(d) ’a -> ’a

(e) (int -> float) -> int -> string

(f) (string -> bool) -> float -> bool

(g) (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

(h) ’a -> (’a -> ’b) -> ’b

(i) ’a -> (’a -> string -> ’b) -> ’b

(j) char -> (int -> int)

(k) (unit -> unit) -> unit

(l) char -> (int -> int) -> (’a -> string)

(m) ’a -> string

(n) (string -> ’a) -> ’a

3. (a) Closure

(b) Higher-order function

(c) Curried functions

4. (a) let log s f =

printfn "%s" s

f ()

(b) log "Flying now"

(fun () -> fly 300 12.4)

(c) The only way in which the log function can
affect the computation is by altering the out-
put of the function that it is passed. How-
ever, the only place that log can obtain an ’a

value is via the function; and log returns an
’a value as well. There is no modification
operation which can operate on a paramet-
rically polymorphic type, and therefore the
log function has no choice but to pass the
output of the passed function onwards un-
changed.

76 ANSWERS

	Notation and conventions
	Whitespace conventions

	Setup
	F# files
	F# interactive

	Introduction
	Immutability
	Expressions
	Functions
	First-class functions
	Referentialtransparency
	Purity

	Exercises
	Basics
	Operators
	Patterns

	Exercises
	Functions
	Curried functions
	Function types
	Operators

	Exercises
	Tutorial
	Extensions

	Match expressions
	Mapping functions

	Exercises
	Tutorial
	Extensions

	Can you be helped?
	Scepticalepsy
	Analogiculosis
	Functionalophobia
	Syntactic dyslexia
	Hypopractical psychosis
	Space dysmorphopsia

	Iteration
	More efficient recursion

	Exercises
	Tutorial
	Square root
	Chocolate wrappers

	Basic data structures
	Tuples and Records
	Discriminated unions
	Comparison
	``as'' patterns

	Exercises
	Tutorial
	Commission of Sales

	Type theory
	Type-safety
	Parametric polymorphism
	Type inference
	Type errors
	Generic composite types

	Exercises
	Lists
	Comparison

	Exercises
	Useful functions
	Strings
	Catastrophic errors
	Options and Results
	List operations
	Sequence functions
	Mathematical functions

	Exercises
	Functional techniques
	Higher-order functions
	Closures

	Exercises
	Tutorial
	Extensions

	Lambda calculus
	Basics
	True and false
	Practical impact

	Answers
	Page 7
	Page 13
	Page 19
	Page 25
	Page 33
	Page 41
	Page 49
	Page 53
	Page 59
	Page 63

