

 The RSA Cryptosystem - Concepts

 The RSA Cryptosystem - Concepts

The RSA cryptosystem is one of the first public-key cryptosystems, based on the math of the modular exponentiations and the computational difficulty of the RSA problem and the closely related integer factorization problem (IFP). The RSA algorithm is named after the initial letters of its authors (Rivest–Shamir–Adleman) and is widely used in the early ages of computer cryptography.

Later, when ECC cryptography evolved, the ECC slowly became dominant in the asymmetric cryptosystems, because of its higher security and shorter key lengths than RSA.

The RSA algorithm provides:

	Key-pair generation: generate random private key (typically of size 1024-4096 bits) and corresponding public key.

	Encryption: encrypt a secret message (integer in the range [0...key_length]) using the public key and decrypt it back using the secret key.

	Digital signatures: sign messages (using the private key) and verify message signature (using the public key).

	Key exchange: securely transport a secret key, used for encrypted communication later.

RSA can work with keys of different keys of length: 1024, 2048, 3072, 4096, 8129, 16384 or even more bits. Key length of 3072-bits and above are considered secure. Longer keys provide higher security but consume more computing time, so there is a tradeoff between security and speed. Very long RSA keys (e.g. 50000 bits or 65536 bits) may be too slow for practical use, e.g. key generation may take from several minutes to several hours.

RSA Key Generation

Generating an RSA public + private key pair involves the following:

Using some non-trivial math computations from the number theory, find three very large integers e, d and n, such that:

	(me)d ≡ m (mod n) for all m in the range [0...n)

The integer number n is called "modulus" and it defines the RSA key length. It is typically very large prime number (e.g. 2048 bits).

The pair {n, e} is the public key. It is designed to be shared with everyone. The number e is called "public key exponent". It is usually 65537 (0x010001).

The pair {n, d} is the private key. It is designed to be kept in secret. It is practically infeasible to calculate the private key from the public key {n, e}. The number d is called "private key exponent" (the secret exponent).

RSA Public Key - Example

Example of 2048-bit RSA public key (represented as 2048-bit hexadecimal integer modulus n and 24-bit public exponent e):

n = 0xa709e2f84ac0e21eb0caa018cf7f697f774e96f8115fc2359e9cf60b1dd8d4048d974cdf8422bef6be3c162b04b916f7ea2133f0e3e4e0eee164859bd9c1e0ef0357c142f4f633b4add4aab86c8f8895cd33fbf4e024d9a3ad6be6267570b4a72d2c34354e0139e74ada665a16a2611490debb8e131a6cffc7ef25e74240803dd71a4fcd953c988111b0aa9bbc4c57024fc5e8c4462ad9049c7f1abed859c63455fa6d58b5cc34a3d3206ff74b9e96c336dbacf0cdd18ed0c66796ce00ab07f36b24cbe3342523fd8215a8e77f89e86a08db911f237459388dee642dae7cb2644a03e71ed5c6fa5077cf4090fafa556048b536b879a88f628698f0c7b420c4b7
e = 0x010001

The same RSA public key, encoded in the traditional for RSA format PKCS#8 PEM ASN.1 looks like this:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEApwni+ErA4h6wyqAYz39p
f3dOlvgRX8I1npz2Cx3Y1ASNl0zfhCK+9r48FisEuRb36iEz8OPk4O7hZIWb2cHg
7wNXwUL09jO0rdSquGyPiJXNM/v04CTZo61r5iZ1cLSnLSw0NU4BOedK2mZaFqJh
FJDeu44TGmz/x+8l50JAgD3XGk/NlTyYgRGwqpu8TFcCT8XoxEYq2QScfxq+2FnG
NFX6bVi1zDSj0yBv90uelsM226zwzdGO0MZnls4AqwfzayTL4zQlI/2CFajnf4no
agjbkR8jdFk4je5kLa58smRKA+ce1cb6UHfPQJD6+lVgSLU2uHmoj2KGmPDHtCDE
twIDAQAB
-----END PUBLIC KEY-----

The above PEM ASN.1-encoded message, holding the RSA public key, can be decoded here: https://lapo.it/asn1js.

RSA Private Key - Example

Example of 2048-bit RSA private key, corresponding to the above given public key (represented as hexadecimal 2048-bit integer modulus n and 2048-bit secret exponent d):

n = 0xa709e2f84ac0e21eb0caa018cf7f697f774e96f8115fc2359e9cf60b1dd8d4048d974cdf8422bef6be3c162b04b916f7ea2133f0e3e4e0eee164859bd9c1e0ef0357c142f4f633b4add4aab86c8f8895cd33fbf4e024d9a3ad6be6267570b4a72d2c34354e0139e74ada665a16a2611490debb8e131a6cffc7ef25e74240803dd71a4fcd953c988111b0aa9bbc4c57024fc5e8c4462ad9049c7f1abed859c63455fa6d58b5cc34a3d3206ff74b9e96c336dbacf0cdd18ed0c66796ce00ab07f36b24cbe3342523fd8215a8e77f89e86a08db911f237459388dee642dae7cb2644a03e71ed5c6fa5077cf4090fafa556048b536b879a88f628698f0c7b420c4b7
d = 0x10f22727e552e2c86ba06d7ed6de28326eef76d0128327cd64c5566368fdc1a9f740ad8dd221419a5550fc8c14b33fa9f058b9fa4044775aaf5c66a999a7da4d4fdb8141c25ee5294ea6a54331d045f25c9a5f7f47960acbae20fa27ab5669c80eaf235a1d0b1c22b8d750a191c0f0c9b3561aaa4934847101343920d84f24334d3af05fede0e355911c7db8b8de3bf435907c855c3d7eeede4f148df830b43dd360b43692239ac10e566f138fb4b30fb1af0603cfcf0cd8adf4349a0d0b93bf89804e7c2e24ca7615e51af66dccfdb71a1204e2107abbee4259f2cac917fafe3b029baf13c4dde7923c47ee3fec248390203a384b9eb773c154540c5196bce1

The same RSA private key, encoded in the traditional for RSA format PKCS#8 PEM ASN.1 looks a bit longer:

-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEApwni+ErA4h6wyqAYz39pf3dOlvgRX8I1npz2Cx3Y1ASNl0zf
hCK+9r48FisEuRb36iEz8OPk4O7hZIWb2cHg7wNXwUL09jO0rdSquGyPiJXNM/v0
4CTZo61r5iZ1cLSnLSw0NU4BOedK2mZaFqJhFJDeu44TGmz/x+8l50JAgD3XGk/N
lTyYgRGwqpu8TFcCT8XoxEYq2QScfxq+2FnGNFX6bVi1zDSj0yBv90uelsM226zw
zdGO0MZnls4AqwfzayTL4zQlI/2CFajnf4noagjbkR8jdFk4je5kLa58smRKA+ce
1cb6UHfPQJD6+lVgSLU2uHmoj2KGmPDHtCDEtwIDAQABAoIBABDyJyflUuLIa6Bt
ftbeKDJu73bQEoMnzWTFVmNo/cGp90CtjdIhQZpVUPyMFLM/qfBYufpARHdar1xm
qZmn2k1P24FBwl7lKU6mpUMx0EXyXJpff0eWCsuuIPonq1ZpyA6vI1odCxwiuNdQ
oZHA8MmzVhqqSTSEcQE0OSDYTyQzTTrwX+3g41WRHH24uN479DWQfIVcPX7u3k8U
jfgwtD3TYLQ2kiOawQ5WbxOPtLMPsa8GA8/PDNit9DSaDQuTv4mATnwuJMp2FeUa
9m3M/bcaEgTiEHq77kJZ8srJF/r+OwKbrxPE3eeSPEfuP+wkg5AgOjhLnrdzwVRU
DFGWvOECgYEAyIk7F0S0AGn2aryhw9CihDfimigCxEmtIO5q7mnItCfeQwYPsX72
1fLpJNgfPc9DDfhAZ2hLSsBlAPLUOa0Cuny9PCBWVuxi1WjLVaeZCV2bF11mAgW2
fjLkAXT34IX+HZl60VoetSWq9ibfkJHeCAPnh/yjdB3Vs+2wxNkU8m8CgYEA1Tzm
mjJq7M6f+zMo7DpRwFazGMmrLKFmHiGBY6sEg7EmoeH2CkAQePIGQw/Rk16gWJR6
DtUZ9666sjCH6/79rx2xg+9AB76XTFFzIxOk9cm49cIosDMk4mogSfK0Zg8nVbyW
5nEb//9JCrZ18g4lD3IrT5VJoF4MhfdBUjAS1jkCgYB+RDIpv3+bNx0KLgWpFwgN
Omb667B6SW2ya4x227KdBPFkwD9HYosnQZDdOxvIvmUZObPLqJan1aaDR2Krgi1S
oNJCNpZGmwbMGvTU1Pd+Nys9NfjR0ykKIx7/b9fXzman2ojDovvs0W/pF6bzD3V/
FH5HWKLOrS5u4X3JJGqVDwKBgQCd953FwW/gujld+EpqpdGGMTRAOrXqPC7QR3X5
Beo0PPonlqOUeF07m9/zsjZJfCJBPM0nS8sO54w7ESTAOYhpQBAPcx/2HMUsrnIj
HBxqUOQKe6l0zo6WhJQi8/+cU8GKDEmlsUlS3iWYIA9EICJoTOW08R04BjQ00jS7
1A1AUQKBgHlHrV/6S/4hjvMp+30hX5DpZviUDiwcGOGasmIYXAgwXepJUq0xN6aa
lnT+ykLGSMMY/LABQiNZALZQtwK35KTshnThK6zB4e9p8JUCVrFpssJ2NCrMY3SU
qw87K1W6engeDrmunkJ/PmvSDLYeGiYWmEKQbLQchTxx1IEddXkK
-----END RSA PRIVATE KEY-----

It holds the entire RSA key-pair structure, along with several additional parameters: 2048-bit modulus n, 24-bit public exponent e, 2048-bit secret exponent d, first factor p, second factor q, and 3 other integers from the RSA internal data structure:

The above PEM ASN.1-encoded message, holding the RSA private key data, can be decoded here: https://lapo.it/asn1js.

RSA Cryptography: Encrypt a Message

Encrypting a message using certain RSA public key {n, e} is done by the following transformation:

	encryptedMsg = (msg)e mod n

The msg here is a number in the range [0...n). Text messages should be encoded as integers in the range [0...n) before encryption (see EAOP). For larger texts, hybrid encryption should be used (encrypt a secret key and use it to symmetrically encrypt the text, see RSA-KEM).

The above operation cannot be reversed: no efficient algorithm exists to calculate msg from encryptedMsg, e and n (see the RSA problem), which all are public (non-secret) by design.

RSA Cryptography: Decrypt a Message

Decrypting the encrypted message using the corresponding RSA private key {n, d} is done by the following transformation:

	decryptedMsg = (encryptedMsg)d mod n

Why this is correct? Recall, that by definition the RSA key-pair has the following property:

	(me)d ≡ m (mod n) for any m in the range [0...n)

From the encryption transformation we have:

	encryptedMsg = (msg)e mod n

Hence:

	decryptedMsg = (encryptedMsg)d mod n = ((msg)e mod n)d = ((msg)e)d mod n = (msg) mod n = msg

RSA Encrypt and Decrypt - Example

Let examine one example of RSA encryption and decryption, along with the calculations, following the above formulas. Assume we have generated the RSA public-private key pair:

	modulus n = 143

	public exponent e = 7

	private exponent d = 103

	public key = {n, e} = {143, 7}

	private key = {n, d} = {143, 103}

Let's encrypt a secret message msg = 83. Just follow the formula:

	encryptedMsg = msge mod n = 837 mod 143 = 27136050989627 mod 143 = 8

Now, let's decrypt the encrypted message back to its original value:

	decryptedMsg = encryptedMsgd mod n = 8103 mod 143 = 1042962419883256876169444192465601618458351817556959360325703910069443225478828393565899456512 mod 143 = 83

The RSA calculations work correctly. This is because the key-pair meets the RSA property:

	(me)d ≡ m (mod n) for all m in the range [0...n)

	(m7)103 ≡ m (mod 143) for all m in the range [0...143)

In the real world, typically the RSA modulus n and the private exponent d are 3072-bit or 4096-bit integers and the public exponent e is 65537.

For further reading, look at this excellent explanation about how RSA works in detail with explainations and examples: http://doctrina.org/How-RSA-Works-With-Examples.html.

Because RSA encryption is a deterministic (has no random component) attackers can successfully launch a chosen plaintext attack against by encrypting likely plaintexts with the public key and test if they are equal to the ciphertext. This may not be a problem, but is a weakness, that should be considered when developers choose an encryption scheme.

Hybrid encryption schemes like RSA-KEM solve this vulnerability and allow encrypting longer texts.

 Hash Functions

 Hashing and Cryptographic Hash Functions

In computer programming hash functions map text (or other data) to integer numbers. Usually different inputs maps to different outputs, but sometimes a collision may happen (different input with the same output).

Hashing

The process of calculating the value of certain hash function is called "hashing".

[image:]

In the above example the text John Smith is hashed to the hash value 02 and Lisa Smith is hashed to 01. The input texts John Smith and Sandra Dee both are hashed to 02 and this is called "collision".

Hash functions are irreversible by design, which means that there is no fast algorithm to restore the input message from its hash value.

In programming hash functions are used in the implementation of the data structure "hash-table" (associative array) which maps values of certain input type to values of another type, e.g. map product name (text) to product price (decimal number).

A naive hash function is just to sum the bytes of the input data / text. It causes a lot of collisions, e.g. hello and ehllo will have the same hash code. Better hash functions may use the Merkle–Damgård construction scheme, which takes the first byte as state, then transforms the state (e.g. multiplies it by a prime number like 31), then adds the next byte to the state, then again transforms the state and adds the next byte, etc. This significantly reduces the rate of collisions and produces better distribution.

Cryptographic Hash Functions

In cryptography, hash functions transform input data of arbitrary size (e.g. a text message) to a result of fixed size (e.g. 256 bits), which is called hash value (or hash code, message digest, or simply hash). Hash functions (hashing algorithms) used in computer cryptography are known as "cryptographic hash functions". Examples of such functions are SHA-256 and SHA3-256, which transform arbitrary input to 256-bit output.

[image:]

Cryptographic Hash Functions - Examples

As an example, we can take the cryptographic hash function SHA-256 and calculate the hash value of certain text message hello:

SHA-256("hello") =
 "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"

There is no efficient algorithm to find the input message (in the above example hello) from its hash value (in the above example 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824). It is well-known that cryptographic hash functions cannot be reversed back, so they are used widely to encode an input without revealing it (e.g. encode a private key to a blockchain address without revealing the key).

As another example, we can take the cryptographic hash function SHA3-512 and calculate the hash value of the same text message hello:

SHA3-512("hello") = "75d527c368f2efe848ecf6b073a36767800805e9eef2b1857d5f984f036eb6df891d75f72d9b154518c1cd58835286d1da9a38deba3de98b5a53e5ed78a84976"

Cryptographic Hash Functions - Live Demo

Play with most popular cryptographic hash functions online: https://www.fileformat.info/tool/hash.htm.

[image:]

Cryptographic hash functions are widely used in cryptography, in computer programming and in blockchain systems.

 DHKE - Examples

 Diffie–Hellman Key Exchange - Examples in Python

Let's give a simple code example in Python to demonstrate the classical Diffie–Hellman Key Exchange (DHKE) algorithm.

First, install the Python package PyDHE:

pip install pyDHE

Next, write the code for the DHKE example:

import pyDHE

alice = pyDHE.new()
alicePubKey = alice.getPublicKey()
print("Alice public key:", hex(alicePubKey))

bob = pyDHE.new()
bobPubKey = bob.getPublicKey()
print("Bob public key:", hex(bobPubKey))

print("Now exchange the public keys (e.g. through Internet)")

aliceSharedKey = alice.update(bobPubKey)
print("Alice shared key:", hex(aliceSharedKey))

bobSharedKey = bob.update(alicePubKey)
print("Bob shared key:", hex(bobSharedKey))

print("Equal shared keys:", aliceSharedKey == bobSharedKey)

When you run the above code, it will generate and print two 2048-bit public keys (for Alice and for Bob). Assume that Allice and Bob have exchanged their public keys (e.g. send them to each other through Internet). Once Alice has received Bob's public key, she can calculate the shared secret by combining it to her private key. Respectively, once Bob has received Alice's public key, he can calculate the shared secret by combining it to his private key. The sample output from the above example shows that the shared secret is always the same number (2048-bit integer):

Alice public key: 0xa26c2f1354a8f58abbf78172730595c4de8277962ebe92100793f99ea80f66abe5e75a14a52e86ce1c086c1ca2e1662b3900510346d848b425d34279ceea92661fb1166b9438589c0b57eb4ebb69e0c3844ebe5ad4c0e316b637d47148d69dc2387c2968c82d198114a6c0f14a605a9e85110d24a9db4f11963b9b13dc788c0538096cadffd258364c63621f6bb1a3e515d3741af4619e62452a394fab9d84be7cee255fdd7216401cafee6471b4adbb77e93f878f1bb4df633e0632522b51fe70fc154e7d3e60a69f815a4e2a84506f05b1ccfce01e873cd7dc51fba0b6eac66af1c0a7500f71af405a6c34ffd27a1239180c22fbddf8dc15d30c821c57307d
Bob public key: 0x822660dfff1af80c237402263dda9e0e417fa04547a4e36041a35a152df28b0ac66b059d9e0034c7cd58b6b7edbc8a20bf1bdc2af6534bd6f2dbcffeb9a4aa9f038461994622f786258beb8f6493594e1559e5ebf5a92ba60335f668a9ccbf8d6d87460f21d94938ac40cfd78d062571f68aa7e7fbabed4ba582e8e831288670004ae64be113a2c7b5b9a472ba4733ea4f29c1b1f30ead3729908d9bb54278a499b2c16cc62d4f330a28cdd302bf655f3d724b6d5b0655c9299ada183d8bed4e98c2f0d93339eb3c22c88c9d000de4ea3286b6be5b96e7d7cccb7b8d6a079264e155c5b25b5aca21ccfed7d21d5dce79845fe5456419504ec9c2a896448572e7
Now exchange the public keys (e.g. through Internet)
Alice shared key: 0x60d96187ae1db8e8acac7795837a2964e4972ebf666eaecfa09135371a2de5287db18c1a30f2af840f04cac42fea21e42369af5ffbeb235faa42da6bed24cd922ea4637ad146558f2d8b07b19a0084c19f041af5456a5826dd836d0c9c4f32ca0a5877da9493af36f66949e76af12e45a20b20c222a37a49b658066bd7b1f79bcf81d1083e79c62c43e3ee11f8727e798e310a2683939c06b75ab80c531743d6c03c90007ab8a36af45b3573f4e41a2a41c9fdde962493f9ed860597ee527d978e41a413d13198aaac2b27e70aac5be15fd695592350c56b6d74b3427dcf6888ee11cef4b4d8f5b3acbfbda1d9b8d7425bc9446e1a6424a929d9136590161cfe
Bob shared key: 0x60d96187ae1db8e8acac7795837a2964e4972ebf666eaecfa09135371a2de5287db18c1a30f2af840f04cac42fea21e42369af5ffbeb235faa42da6bed24cd922ea4637ad146558f2d8b07b19a0084c19f041af5456a5826dd836d0c9c4f32ca0a5877da9493af36f66949e76af12e45a20b20c222a37a49b658066bd7b1f79bcf81d1083e79c62c43e3ee11f8727e798e310a2683939c06b75ab80c531743d6c03c90007ab8a36af45b3573f4e41a2a41c9fdde962493f9ed860597ee527d978e41a413d13198aaac2b27e70aac5be15fd695592350c56b6d74b3427dcf6888ee11cef4b4d8f5b3acbfbda1d9b8d7425bc9446e1a6424a929d9136590161cfe
Equal shared keys: True

Note that your output will be different due to the randomness during the key generation process. The above code uses a 2048-bit public and privvate keys, as specified in the RFC 3526 (group 14). You can change the DHKE key size (from 1536-bits to 8192-bits) by specifying a different RFC 3526 group (e.g. 18 for 8192-bit keys). For example change these two lines:

alice = pyDHE.new(group=18)
bob = pyDHE.new(group=18)

The above changes will switch to 8192-bit keys and will significantly slow-down the calculations. The output will look like this:

Alice public key: 0x86b2c2bda3982af803084b65d982c08f3462046d154c9ee6fb7c8dcdd4a2922b72487c46e42777ea8bbfad73ca2f340397ddc2b3ddb215891b4811fe014ae176918cc01817e4d9358e6053ed49790e224721bd14abe7cdeac10be211782d0b1a110c5968654873b1eb3e591c6e5acd0197459aac04da06620d424b327124dee4958fe49be3f44100591e8560a0e137abb9c47973e4701b3e127a05482934b3b9fdb4117365c476bb6665d867b2dd58cab72073bcb6632883fba3043b8544a4726fcd013f1676963d612f634675674de1d295e90101d9a0523ae1717eb2ea11a05e4902af572a9bfff0344c3383e8b85fa7db234927b053d098eda9fda0970c92917caa95fe4dc79376f6b8f0ee4a9682c88870c36b345049b3ef89bdcfc0f8751b02afa88b22fd5b94d33a49bcf6d262255ac18e27e96675f311b654f99fa31e060f7e2afbd888099bba072cefaab1e1c40a73845c139e3feaecee76965b71255473b485976e7f7d87e2ff61a62ddadd5f7f02e9353f5d4f091360418eb7935e83d1e6355c82feff3583725017e8b8b6148af839e3e7cfd3d549b679d9878544366676509b61b590ce25abbb440207b23fec9c04daef70590c46d720af273d6dafb34d2e5b68e24499a4b7ac254ee000712dd0e4ae72299fb103098b8d54c2c28a66e74d52db4853bb695cbff9a09f8223c55f1e2fd351d419a091cc643b3abc42a477ef6f3eb9d2913e45bcb3ba76771bccfafa85abe3cf37c42bf1baf59f122785ec47b51b45c4ba0875e6a80230c5035e45c1cf32e8b7b52ee44e2c3b06330c29f047dd5b0983ae8db34d1ca1a127d1da72d4e0244690c63af4ecf3003152a1cfaa5b4139c361cd3cc54fb7e91bdcac9bf81498da90cf249621df90947ccbece28c5befec6bf832d873e18293e7b8e9562596c4b50c61e1aff9b8d13a02df25675c5045aec14d3e83253d210ae7e6f2c62d622c7bcaf87cd6a4bb63a25d18cc0672fe3488eefb058231daf17a570382ffb56e490b1e5003284ca5a8978aa4c09d3e9a11eae379bd66fe86999c10fbe1eb6763d1b6b4f277e8347462e91f127a0f2fe8a9a16381452e3515608e950587f74e1f85b10ab32e667248f8764d90a8b92eb6bcce14cf7306fa56bc7852a0f2811651665f2121a6253e3e4bfecb12b54c8cd11a54d74346c3b9f2c8c7b71ea60fce8eb1d3badcea909b7f082e4e4a4ad4e2a501b2fd3a4c7acd48b416706dc3fbda180cec831bacd558fc15cfa3e19347bb5297ac7a4b931b6e19f9b0dfb0c07696727402c1c5215c0822776147a9a9c7c10bc04d23d6cee974fc37a32fd758cd09bff9f0b1cdd9e09734aa0abe0dc9f3a74415c411ce2b07369445d6e4929a0132db60024cf260b17fb3401beb794a5a365a3be92677fb68f60e091cb5cfc5d767290c4655d6922c2bd194671d5b
Bob public key: 0xbae8a1e6b00ee2df7996323f2d03dd650dcc19e5f2de8c77b4dcd0c611ab50e1bdd41c5d3b8060a3047616b0a2e55aee0d8211b1d7b18e996e3cd02cf3580247ca42707f73a02266beb077f50b32940c2e09f08f1906f177bb1ce3fb6c8516d2f45091aba35a1afac904e694e4c844c3603fd7c8750c15ae349486160d4ce5fce0c228c8edcd6599f0e680f6928ea7bbec0e9e3787f1476ce02692a22862df0213287dbc0864602c29314f3de68625940d4dd1ac47d506015dbfee92cda106e5f13360b7d805973b03634726e2e0905bf61736d188cd3d90f667543547496fa0d9b609320d84d09cde89ff5c1077e811664102f0c69cad41f620fb0ce9651708b8dc3caec2a78029d449e30976cbe943d39545a1a3979febbf3e890d2bb389180addcb5af1606baedc4ad2479fe840adae9a64df36de02b019ff2b639dec3234d844656ef894273e07c272fbd1c650ea853bcdc3518118bf78dc9959a83633e43a04245d563c2e948be7fa1ffa21e1bb203ae9339e5d9e7a1e0c8ba53cd3c67fc8ba63b1a266299eeb4f66810854b5780e6cb232d04350079ffc58914ec8d9b3345321c1d55ab0b87fbcd58c01d63d276497cdcfcf79615cac39af387322baeca6dd1659f4646c487dcae7a84ca77d61fdbd99e81fab7111d6396eb387497a4f914dd45ca67a2e3c026ddd12f4446397af8fe724228a9aad6e40fe6f788aae5999d60866934f81519b0f709818150b9f61a2a7f1e742423a6da12e05b30a6b4f64f93d3eacda690ad390ec6358bcfc0de052fdff8c1ede1e3ea5dff104551771d8f3f4556ef8cb64df7b9a66d56e5964dc31ab28bdacd46d7a6ea994fbb6fe302b34ffa2cb095f5a4ee9bee18ae2f6ca29f269bb55995804f9925c10a7e5e5ad3010734b01b192f047c433e04fd836e0ef77b3d6a05503e1692168c664058d5562bec8f53d3839a117e170add42aa7cd941532cbc6eb6d5f411742cc436ceb679c8f827d538ccc3064dd41b91a77d5f3e68a44b63af94c95bc93656cdc7a6e9776db02c9ada793f8a1e16315f39b664564aa676d9cc8a304aa5ab1849b49b905cc18bb798c2ac8db40a3e0533224dba5b0084ff5855cf840123b29d8738a2df891f32fd883d984b37aed8a3ffb8c121e5a4e187dc8165d3aacf7698b01dc405590c14acd22e0e2a483d71a8d28d671f1b5f3c6ea06121b4c8adc6e261720b3dcd66748659cda7ddd8db727dfbf58047386b32a3a3bb7288c85d8712a984abb68d7f364d5498c8be4e3e15b87a8b6794d9fd19e36d416344659a7c427bd1723a5d4574bb6ac9be7181045ec4c1c8d2cd6ca9c7d7187647a6637e684cb57fd16ea635c18de9845487db591db7bebd3373b5b62f623080a2e007061b0e7a481ffa53e8e6801cfa562feb8b5794b4a363d3163ebcc2f7e69d8f3334d6564a5dd1020
Now exchange the public keys (e.g. through Internet)
Alice shared key: 0x964d9b37aa16599c0ce2442f887302555e91d4adb3ae42518a573d149bbdbf31d716e100f7cab9b2c1aa1e02b6ecf770db0aa2a92b945a87c3c62764c0e44945322d358bd0b5ddc5517afbc88714c1d66bede6a209e69f66b23937bf3e2d38357a3365efe2f1624ff653adc76eccc98df66a67da7e93f4ec9ad5487412725f8ab675f3a3234ac88c8585a6232385b69cfc0a02c520609e7df5fd19814e6d10c7bb0d040bc5b4f8927db9bf006c67a797080f04aa740b6c1aa93c24c49e3bdf93b8911134fe07768b910b166516e560cbd12f3b20d293f83c6744e3bc019ba5b46e0fb50e02d7e74da46c3870027c870e4fb81f23a073355069b01feb5b1c445a6231a59f5a67a84c7334a9d635ddb33644c05a1f5f22d8e47d214d99d797660f3691bc55a616a0d2ef9c8f8845385ae808f9aef35b94e710c58691be4819a7e1db320fc933dd8eded761bfee1a021b169c734a486f46154cebceff4e47b83099080bbbb21db2c7042de10be5305901ec5f56056618ae063d1ac7e5351a0774c1ae898f64897cd41e553041f4cd3aa5786c8b998beb3ddabf6129df9207b52270a6ed48d612a1909634967d552b3216a2189904ed9f75ffa319a6d911e0a39cc0bf45cd0b0b55a90060ff642b038d12fa97125e46a1473ec50a01cd90a24af5f55f3841514a3fbe304ed9501a03bb28bed0ab23651d496748170f2f769fd997e6cd638b7267e7ee58e7f6a866f3e2ab94be5ddb675fa741d2784ea9025ab99dc639a6af90e32a1634dc9bcba5aef6e0ec6f1138cf9d170fafc6c2aee8f1c8af9a0cb1fd2b3932e7c35d87c3cde1034213fefe7495e927109cc0d0c7b4f1ee7588ae85da923c8d761241fcc98300d03a1d41a81fb716896fd2d0d4c95a416651d64568ea0b164d97fe28d0a4645cebde9038d5c376accbaaaca7f140b4ee960d85b1811bc108a33f9186521388f8addccf356bb8c03aa430f4193c1ffdd6af9e431847029b83d0379f23fd8a353fa35f1b13f5df53c243bd4bab1df6c586612145c0743f29a0b6939d6bb4082feae75ef89f04fbacefba862ff8efc216241ffffffbf55b91394a488a20c7bab19eaf2336f1785a70b2cc2f27be5054b10681e829c0958622d9e686c226e8160795190abb87da710c46e032ca314b3f3699044642c8669c72c06596fbda1be5eb502e8d51fb0f4812750e465761f5266f2ecd1537396d53c9218aa21aaeda3564241a99305f312d58fb053926e08f06c315d9877454006b6b6d8f4dd75c744d27c302617d43577f5a03577fc7b70cecf01f53445bafd0fd6f4d90cb75fa5e1da591874c4e486e1c18a3097b0c4d00a8a69306551eb8b4138b085942a3f4dfdf3ae62e510eab6ead63473db09c373a7915ccaf8c0441a8c35e1cd21be057a5a1e8203ca687c1bd89d2fe6b82f83716f3b14b7be192
Bob shared key: 0x964d9b37aa16599c0ce2442f887302555e91d4adb3ae42518a573d149bbdbf31d716e100f7cab9b2c1aa1e02b6ecf770db0aa2a92b945a87c3c62764c0e44945322d358bd0b5ddc5517afbc88714c1d66bede6a209e69f66b23937bf3e2d38357a3365efe2f1624ff653adc76eccc98df66a67da7e93f4ec9ad5487412725f8ab675f3a3234ac88c8585a6232385b69cfc0a02c520609e7df5fd19814e6d10c7bb0d040bc5b4f8927db9bf006c67a797080f04aa740b6c1aa93c24c49e3bdf93b8911134fe07768b910b166516e560cbd12f3b20d293f83c6744e3bc019ba5b46e0fb50e02d7e74da46c3870027c870e4fb81f23a073355069b01feb5b1c445a6231a59f5a67a84c7334a9d635ddb33644c05a1f5f22d8e47d214d99d797660f3691bc55a616a0d2ef9c8f8845385ae808f9aef35b94e710c58691be4819a7e1db320fc933dd8eded761bfee1a021b169c734a486f46154cebceff4e47b83099080bbbb21db2c7042de10be5305901ec5f56056618ae063d1ac7e5351a0774c1ae898f64897cd41e553041f4cd3aa5786c8b998beb3ddabf6129df9207b52270a6ed48d612a1909634967d552b3216a2189904ed9f75ffa319a6d911e0a39cc0bf45cd0b0b55a90060ff642b038d12fa97125e46a1473ec50a01cd90a24af5f55f3841514a3fbe304ed9501a03bb28bed0ab23651d496748170f2f769fd997e6cd638b7267e7ee58e7f6a866f3e2ab94be5ddb675fa741d2784ea9025ab99dc639a6af90e32a1634dc9bcba5aef6e0ec6f1138cf9d170fafc6c2aee8f1c8af9a0cb1fd2b3932e7c35d87c3cde1034213fefe7495e927109cc0d0c7b4f1ee7588ae85da923c8d761241fcc98300d03a1d41a81fb716896fd2d0d4c95a416651d64568ea0b164d97fe28d0a4645cebde9038d5c376accbaaaca7f140b4ee960d85b1811bc108a33f9186521388f8addccf356bb8c03aa430f4193c1ffdd6af9e431847029b83d0379f23fd8a353fa35f1b13f5df53c243bd4bab1df6c586612145c0743f29a0b6939d6bb4082feae75ef89f04fbacefba862ff8efc216241ffffffbf55b91394a488a20c7bab19eaf2336f1785a70b2cc2f27be5054b10681e829c0958622d9e686c226e8160795190abb87da710c46e032ca314b3f3699044642c8669c72c06596fbda1be5eb502e8d51fb0f4812750e465761f5266f2ecd1537396d53c9218aa21aaeda3564241a99305f312d58fb053926e08f06c315d9877454006b6b6d8f4dd75c744d27c302617d43577f5a03577fc7b70cecf01f53445bafd0fd6f4d90cb75fa5e1da591874c4e486e1c18a3097b0c4d00a8a69306551eb8b4138b085942a3f4dfdf3ae62e510eab6ead63473db09c373a7915ccaf8c0441a8c35e1cd21be057a5a1e8203ca687c1bd89d2fe6b82f83716f3b14b7be192
Equal shared keys: True

Enjoy to modify and experiment with the above code to learn the DHKE protocol.

 ECC Encryption / Decryption

 ECC-Based Encryption / Decryption

Assume we have a ECC private-public key pair. We want to encrypt and decrypt data using these keys. By definition, asymmetric encryption works as follows: if we encrypt data by a private key, we will be able to decrypt the ciphertext later by the corresponding public key:

[image:]

The above process can be directly applied for the RSA cryptosystem, but not for the ECC. The elliptic curve cryptography (ECC) does not directly provide encryption method. Instead, we can design a hybrid encryption scheme by using the ECDH (Elliptic Curve Diffie–Hellman) key exchange scheme to derive a shared secret key for symmetric data encryption and decryption. Let's get into details how to do this.

ECC-Based Secret Key Derivation (using ECDH)

Assume we have a cryptographic elliptic curve over finite field, along with its generator point G. We can use the following two functions to calculate a shared a secret key for encryption and decryption (derived from the ECDH scheme):

	calculateEncryptionKey(pubKey) --> (sharedECCKey, ciphertextPubKey)
	Generate ciphertextPrivKey = new random private key.

	Calculate ciphertextPubKey = ciphertextPrivKey * G.

	Calculate the ECDH shared secret: sharedECCKey = pubKey * ciphertextPrivKey.

	Return both the sharedECCKey + ciphertextPubKey. Use the sharedECCKey for symmetric encryption. Use the randomly generated ciphertextPubKey to calculate the decryption key later.

	calculateDecryptionKey(privKey, ciphertextPubKey) --> sharedECCKey
	Calculate the the ECDH shared secret: sharedECCKey = ciphertextPubKey * privKey.

	Return the sharedECCKey and use it for the decryption.

The above calculations use the same math, like the ECDH algorithm (see the previous section). Recall that EC points have the following property:

	(a * G) * b = (b * G) * a

Now, assume that a = privKey, a * G = pubKey, b = ciphertextPrivKey, b * G = ciphertextPubKey.

The above equation takes the following form:

	pubKey * ciphertextPrivKey = ciphertextPubKey * privKey = sharedECCKey

This is what exactly the above two functions calculate, directly following the ECDH key agreement scheme.

ECC-Based Secret Key Derivation - Example in Python

The below Python code uses the tinyec library to generate a ECC private-public key pair (based on the brainpoolP256r1 curve) and then derive a secret key (for encryption) from the ECC public key and later derive the same secret key (for decryption) from the private key and the generated earlier ciphertext public key:

from tinyec import registry
import secrets

curve = registry.get_curve('brainpoolP256r1')

def compress_point(point):
 return hex(point.x) + hex(point.y % 2)[2:]

def ecc_calc_encryption_keys(pubKey):
 ciphertextPrivKey = secrets.randbelow(curve.field.n)
 ciphertextPubKey = ciphertextPrivKey * curve.g
 sharedECCKey = pubKey * ciphertextPrivKey
 return (sharedECCKey, ciphertextPubKey)

def ecc_calc_decryption_key(privKey, ciphertextPubKey):
 sharedECCKey = ciphertextPubKey * privKey
 return sharedECCKey

privKey = secrets.randbelow(curve.field.n)
pubKey = privKey * curve.g
print("private key:", hex(privKey))
print("public key:", compress_point(pubKey))

(encryptKey, ciphertextPubKey) = ecc_calc_encryption_keys(pubKey)
print("ciphertext pubKey:", compress_point(ciphertextPubKey))
print("encryption key:", compress_point(encryptKey))

decryptKey = ecc_calc_decryption_key(privKey, ciphertextPubKey)
print("decryption key:", compress_point(decryptKey))

The code is pretty simple and demonstrates that we can generate a pair { secret key + ciphertext public key } from given public key and later we can recover the secret key from the pair { ciphertext public key + private key }. The above code produces output like this:

private key: 0x2e2921b4cde59cdf01e7a014a322abd530b3015085c31cb6e59502da761d29e9
public key: 0x850d3873cf4ac50ddb54ddbd27f8225fc43bd3f4c2cc0a4f9d1f9ce15fc4eb711
ciphertext pubKey: 0x71586f9999d3ee050005054bc681c1d96c5eb054ca15b080ba245e495627003b0
encryption key: 0x9d13d3f8f9747669432f575731926b5ed99a6883f00146cbd3203ffa7ff8b1ae1
decryption key: 0x9d13d3f8f9747669432f575731926b5ed99a6883f00146cbd3203ffa7ff8b1ae1

It is clear that the encryption key (derived from the public key) and the decryption key (derived from the corresponding private key) are the same. This is due to the above discussed property of the ECC: pubKey * ciphertextPrivKey = ciphertextPubKey * privKey. These keys will be used for encryption and decryption in an integrated encryption scheme. The above output will be different if you run the code (due to the randomness used to generate ciphertextPrivKey, but the encryption and decryption keys will always be the same (the ECDH shared secret).

ECC-Based Hybrid Encryption / Decryption - Example in Python

Once we have the secret key, we can use it for symmetric data encryption, using a symmetric encryption scheme like AES-GCM or ChaCha20-Poly1305. Let's implement a fully-functional asymmetric ECC encryption and decryption hybrid scheme. It will be based on the brainpoolP256r1 curve and the AES-256-GCM authenticated symmetric cipher.

We shall use the tinyec and pycryptodome Python libraries respectively for ECC calculations and for the AES cipher:

pip install tinyec
pip install pycryptodome

Let's examine this full ECC + AES hybrid encryption example:

from tinyec import registry
from Crypto.Cipher import AES
import hashlib, secrets, binascii

def encrypt_AES_GCM(msg, secretKey):
 aesCipher = AES.new(secretKey, AES.MODE_GCM)
 ciphertext, authTag = aesCipher.encrypt_and_digest(msg)
 return (ciphertext, aesCipher.nonce, authTag)

def decrypt_AES_GCM(ciphertext, nonce, authTag, secretKey):
 aesCipher = AES.new(secretKey, AES.MODE_GCM, nonce)
 plaintext = aesCipher.decrypt_and_verify(ciphertext, authTag)
 return plaintext

def ecc_point_to_256_bit_key(point):
 sha = hashlib.sha256(int.to_bytes(point.x, 32, 'big'))
 sha.update(int.to_bytes(point.y, 32, 'big'))
 return sha.digest()

curve = registry.get_curve('brainpoolP256r1')

def encrypt_ECC(msg, pubKey):
 ciphertextPrivKey = secrets.randbelow(curve.field.n)
 sharedECCKey = ciphertextPrivKey * pubKey
 secretKey = ecc_point_to_256_bit_key(sharedECCKey)
 ciphertext, nonce, authTag = encrypt_AES_GCM(msg, secretKey)
 ciphertextPubKey = ciphertextPrivKey * curve.g
 return (ciphertext, nonce, authTag, ciphertextPubKey)

def decrypt_ECC(encryptedMsg, privKey):
 (ciphertext, nonce, authTag, ciphertextPubKey) = encryptedMsg
 sharedECCKey = privKey * ciphertextPubKey
 secretKey = ecc_point_to_256_bit_key(sharedECCKey)
 plaintext = decrypt_AES_GCM(ciphertext, nonce, authTag, secretKey)
 return plaintext

msg = b'Text to be encrypted by ECC public key and ' \
 b'decrypted by its corresponding ECC private key'
print("original msg:", msg)
privKey = secrets.randbelow(curve.field.n)
pubKey = privKey * curve.g

encryptedMsg = encrypt_ECC(msg, pubKey)
encryptedMsgObj = {
 'ciphertext': binascii.hexlify(encryptedMsg[0]),
 'nonce': binascii.hexlify(encryptedMsg[1]),
 'authTag': binascii.hexlify(encryptedMsg[2]),
 'ciphertextPubKey': hex(encryptedMsg[3].x) + hex(encryptedMsg[3].y % 2)[2:]
}
print("encrypted msg:", encryptedMsgObj)

decryptedMsg = decrypt_ECC(encryptedMsg, privKey)
print("decrypted msg:", decryptedMsg)

The above example starts from generating an ECC public and private key key pair: pubKey + privKey, using the tinyec library. These keys will be used to encrypt the message msg through the hybrid encryption scheme (asymmetric ECC + symmetric AES) and to decrypt is later back to its original form.

Next, we encrypt msg by using the pubKey and we obtain as a result the following set of output: { ciphertext, nonce, authTag, ciphertextPubKey }. The ciphertext is obtained by the symmetric AES-GCM encryption, along with the nonce (random AES initialization vector) and authTag (the MAC code of the encrypted text, obtained by the GCM block mode). Additionally, we obtain a randomly generated ciphertextPubKey, which will be used to recover the AES symmetric key during the decryption (using the ECDH key agreement scheme, as it was show before).

To decrypt the encrypted message, we use the data produced during the encryption { ciphertext, nonce, authTag, ciphertextPubKey }, along with the decryption privateKey. The result is the decrypted plaintext message. We use authenticated encryption (GCM block mode), so if the decryption key or some other parameter is incorrect, the decryption will fail with an exception.

Internally, the encrypt_ECC(msg, pubKey) function first generates an ECC key-pair for the ciphertext and calculates the symmetric encryption shared ECC key sharedECCKey = ciphertextPrivKey * pubKey. This key is an EC point, so it is then transformed to 256-bit AES secret key (integer) though hashing the point's x and y coordinates. Finally, the AES-256-GCM cipher (from pycryptodome) encrypts the message by the 256-bit shared secret key secretKey and produces as output ciphertext + nonce + authTag.

The decrypt_ECC(encryptedMsg{ciphertext, nonce, authTag, ciphertextPubKey}, privKey) function internally first calculates the symmetric encryption shared ECC key sharedECCKey = privKey * ciphertextPubKey. It is an EC point, so it should be first transformed to 256-bit AES secret key though hashing the point's x and y coordinates. Then the AES-256-GCM cipher is used to decrypt the ciphertext + nonce + authTag by the 256-bit shared secret key secretKey. The produced output is the original plaintext message (or an exception in case of incorrect decryption key or unmatching authTag).

The output from the above code looks like this:

original msg: b'Text to be encrypted by ECC public key and decrypted by its corresponding ECC private key'
encrypted msg: {'ciphertext': b'b5953b3082fcefdbde91dd3c03cf83dde0822c19be6ae906a634db65115295e7cbcd7a1a492d69ba5be91990c70d8df9dc84360cf554f155ef81ce1f0ad44bd9fdabbc5f960517089262b3390e61b37610012bee4e6bcae335', 'nonce': b'9d55f4b5c87fff773d0457f3b23a953e', 'authTag': b'5c9d339778925aa4e44f43252a28681d', 'ciphertextPubKey': '0x21dbc985b625f2a42d0f86fc234b49b55477928bae73dfac73bafd9bed50abe70'}
decrypted msg: b'Text to be encrypted by ECC public key and decrypted by its corresponding ECC private key'

Enjoy the above example, play with it, try to understand how exactly it works, try to change the underlying ECC curve, try to change the symmetric encryption algorithm, try to decrypt the ciphertext with wrong private key.

 MAC and Key Derivation

 MAC Codes and Key Derivation Functions

Message authentication codes (MAC), HMAC (hash-based message authentication code) and KDF (key derivation functions) play important role in cryptography. Let's explain when we need MAC, how to calculate HMAC and how it is related to key derivation functions.

Message Authentication Code (MAC)

Message Authentication Code (MAC) is cryptographic code, calculated by given key and given message:

auth_code = MAC(key, msg)

Typically, it behaves like a hash function: a minor change in the message or in the key results to totally different MAC value. It should be practically infeasible to change the key or the message and get the same MAC value. MAC codes, like hashes, are irreversible: it is impossible to recover the original message or the key from the MAC code.

The MAC code is digital authenticity code, like a digital signature, but with pre-shared key. We shall learn more about digital signing and digital signatures later.

MAC Algorithms

Many algorithms for calculating message authentication codes (MAC) exist in modern cryptography. The most popular are based on hashing algorithms, like HMAC (Hash-based MAC, e.g. HMAC-SHA256) and KMAC (Keccak-based MAC). Others are based on symmetric ciphers, like CMAC (Cipher-based MAC), GMAC (Galois MAC) and Poly1305 (Bernstein's one-time authenticator). Other MAC algorithms include UMAC (based on universal hashing), VMAC (high-performance block cipher-based MAC) and SipHash (simple, fast, secure MAC).

When We Need MAC Codes?

A sample scenario for using MAC codes is like this:

	Two parties exchange somehow a certain secret MAC key (pre-shared key).

	We receive a msg + auth_code from somewhere (e.g. from Internet, from the blockchain, or from email message).

	We want to be sure that the msg is not tampered, which means that both the key and msg are correct and match the MAC code.

	In case of tampered message, the MAC code will be incorrect.

[image:]

Authenticated Encryption: Encrypt / Decrypt Messages using MAC

Another scenario to use MAC codes is for authenticated encryption: when we encrypt a message and we want to be sure the decryption password is correct and the decrypted message is the same like the original message before encryption.

	First, we derive a key from the password. We can use this key for the MAC calculation algorithm (directly or hashed for better security).

	Next, we encrypt the message using the derived key and store the ciphertext in the output.

	Finally, we calculate the MAC code using the derived key and the original message and we append it to the output.

When we decrypt the encrypted message (ciphertext + MAC), we proceed as follows:

	First, we derive a key from the password, entered by the user. It might be the correct password or wrong. We shall find out later.

	Next, we decrypt the message using the derived key. It might be the original message or incorrect message (depends on the password entered).

	Finally, we calculate a MAC code using the derived key + the decrypted message.
	If the calculated MAC code matches the MAC code in the encrypted message, the password is correct.

	Otherwise, it will be proven that the decrypted message is not the original message and this means that the password is incorrect

Some authenticated encryption algorithms (such as AES-GCM and ChaCha20-Poly1305) integrate the MAC calculation into the encryption algorithm and the MAC verification into the decryption algorithm. We shall learn more about these algorithms later.

The MAC is stored along with the ciphertext and it does not reveal the password or the original message. Storing the MAC code, visible to anyone is safe, and after decryption, we know whether the message is the original one or not (wrong password).

MAC-Based Pseudo-Random Generator

Another application of MAC codes is for pseudo-random generator functions. We can start from certain salt (constant number or the current date and time or some other randomness) and some seed number (last random number generated, e.g. 0). We can calculate the next_seed as follows:

next_seed = MAC(salt, seed)

This next pseudo-random number is "randomly changes" after each calculation of the above formula and we can use it to generate the next random number in certain range.

 Hash Functions: Applications

 Cryptographic Hash Functions: Applications

Cryptographic hash functions (like SHA-256 and SHA3-256) are used in many scenarios. Let's review their most common applications.

Document Integrity

Verifying the integrity of files / documents / messages. E.g. a SHA256 checksum may confirm that certain file is original (not modified after its checksum was calculated).

[image:]

The above screenshot demonstrates how the SHA256 checksums ensure the integrity of the OpenSSL files at the official Web site of OpenSSL.

Storing Passwords

Storing passwords and verification of passwords. Instead of keeping a plain-text password in the database, developers usually keep password hashes or more complex values derived from the password (e.g. Scrypt-derived value).

[image:]

The above example comes from the /etc/shadow file in a modern Linux system. The above passwords are stored as multiple-round SHA-512 hashes with salt.

Generate Unique ID

Generate an (almost) unique ID of certain document / message. Cryptographic hash functions almost uniquely identify documents based on their content. In theory collisions are possible with any cryptographic hash function, but are very unlikely to happen, so most systems (like Git) assume that the hash function they use is collistion free.

Usually a document is hashed and the document ID (hash value) is used later to prove the existence of the document, or to retrieve the document from a storage system. Example of hash-based unique IDs are the commit hashes in Git and GitHub, based on the content of the commit (e.g. 3c3be25bc1757ca99aba55d4157596a8ea217698) and the Bitcoin addresses (e.g. 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2).

[image:]

In the above example the SHA-1 unique ID identifies a certain commit in GitHub.

Pseudorandom Number Generation

Pseudorandom generation and key derivation. Hash values can serve as random numbers. A simple way to generate a random sequence is like this: start from a random seed (entropy collected from random events, such like keyboard clicks or mouse moves). Append "1" and calculate the hash to obtain the first random number, then append "2" and calculate the hash to obtain the second random number, etc. We shall give a Python example, implementing the described idea.

Proof-of-Work Algorithms

Proof-of-work (PoW) algorithms. Most proof-of-work algorithms calculate a hash value which is bigger than certain value (known as mining difficulty). To find this hash value, miners calculate billions of different hashes and take the biggest of them, because hash numbers are unpredictable. For example, the proof of work problem might be defined as follows: find a number p, such that hash(x + p) holds 10 zero bits at its beginning.

Cryptographic Hashes are Part of Modern Programming

Cryptographic hash functions are so widely used, that they are often implemented as build-in functions in the standard libraries for the modern programming languages and platforms.

 Exercises: EdDSA Sign and Verify

 Exercises: Sign / Verify Messages using Ed25519

In this exercise we shall sign and verify messages using the EdDSA digital signature algorithm and the edwards25519 curve, following the technical specification from RFC 8032. The Ed25519 digital signature algorithm can be found as library for the most programming languages.

The Ed25519 private key is encoded as 64 hex digits (32 bytes). The corresponding Ed25519 public key is encoded also as 64 hex digits (32 bytes). The EdDSA-Ed25519 signature {R, s} consists of 32 + 32 bytes (64 bytes, 128 hex digits).

EdDSA-Ed25519: Sign Message

Write a program to sign given text message with given private key. The input consists of 2 text lines. The first line holds the input message for signing. The second line holds the private key as hex string. Print the output as JSON document, holding the input message + the public key of the signer (as hex string, uncompressed) + the Ed25519 digital signature (as hex string).

Sample input:

Message for Ed25519 signing
de6d730f36a8607b8bfdaa79b3b1127291f1d50552c2fe05c5254a9719105c4a

Sample output:

{
 "msg": "Message for Ed25519 signing",
 "pubKey":"7721a5832cb70cce1a960cf236d50a0e862555ccad400b5fee0bcf777f7ab476",
 "signature":"6c4adbba332b5db520c0ec95433ea136f70fe2d50e8955a7049d216626a3491c0e5cbfefb8d779687cc9811311ccaf7cd07a0e96a570fb3a4b680a4ead60c602"
}

EdDSA-Ed25519: Verify Signature

Write a program to validate the Ed25519 digital signature, created by the previous exercise. The input comes as JSON document, holding the message + the public key (uncompressed, hex string) + the signature. Print as output a single word: "valid' or "invalid".

Sample input (correctly signed message):

{
 "msg": "Message for Ed25519 signing",
 "pubKey":"7721a5832cb70cce1a960cf236d50a0e862555ccad400b5fee0bcf777f7ab476",
 "signature":"6c4adbba332b5db520c0ec95433ea136f70fe2d50e8955a7049d216626a3491c0e5cbfefb8d779687cc9811311ccaf7cd07a0e96a570fb3a4b680a4ead60c602"
}

Sample output:

valid

Sample input (tampered message):

{
 "msg": "Tampered msg",
 "pubKey":"7721a5832cb70cce1a960cf236d50a0e862555ccad400b5fee0bcf777f7ab476",
 "signature":"6c4adbba332b5db520c0ec95433ea136f70fe2d50e8955a7049d216626a3491c0e5cbfefb8d779687cc9811311ccaf7cd07a0e96a570fb3a4b680a4ead60c602"
}

Sample output:

invalid

 EdDSA and Ed25519

 EdDSA and Ed25519: Elliptic Curve Digital Signatures

EdDSA (Edwards-curve Digital Signature Algorithm) is a modern and secure digital signature algorithm based on performance-optimized elliptic curves, such as the 255-bit curve Curve25519 and the 448-bit curve Curve448-Goldilocks. The EdDSA signatures use the Edwards form of the elliptic curves (for performance reasons), respectively edwards25519 and edwards448. The EdDSA algorithm is based on the Schnorr signature algorithm and relies on the difficulty of the ECDLP problem.

The EdDSA signature algorithm and its variants Ed25519 and Ed448 are technically described in the RFC 8032.

EdDSA Key Generation

Ed25519 and Ed448 use small private keys (32 or 57 bytes respectively), small public keys (32 or 57 bytes) and small signatures (64 or 114 bytes) with high security level at the same time (128-bit or 224-bit respectively).

Assume the elliptic curve for the EdDSA algorithm comes with a generator point G and a subgroup order q for the EC points, generated from G.

The EdDSA key-pair consists of:

	private key (integer): privKey

	public key (EC point): pubKey = privKey * G

The private key is generated from a random integer, known as seed (which should have similar bit length, like the curve order). The seed is first hashed, then the last few bits, corresponding to the curve cofactor (8 for Ed25519 and 4 for X448) are cleared, then the highest bit is cleared and the second highest bit is set. These transformations guarantee that the private key will always belong to the same subgroup of EC points on the curve and that the private keys will always have similar bit length (to protect from timing-based side-channel attacks). For Ed25519 the private key is 32 bytes. For Ed448 the private key is 57 bytes.

The public key pubKey is a point on the elliptic curve, calculated by the EC point multiplication: pubKey = privKey * G (the private key, multiplied by the generator point G for the curve). The public key is encoded as compressed EC point: the y-coordinate, combined with the lowest bit (the parity) of the x-coordinate. For Ed25519 the public key is 32 bytes. For Ed448 the public key is 57 bytes.

EdDSA Sign

The EdDSA signing algorithm (RFC 8032) takes as input a text message msg + the signer's EdDSA private key privKey and produces as output a pair of integers {R, s}. EdDSA signing works as follows (with minor simplifications):

EdDSA_sign(msg, privKey) --> { R, s }

	Calculate pubKey = privKey * G

	Deterministically generate a secret integer r = hash(hash(privKey) + msg) mod q (this is a bit simplified)

	Calculate the public key point behind r by multiplying it by the curve generator: R = r * G

	Calculate h = hash(R + pubKey + msg) mod q

	Calculate s = (r + h * privKey) mod q

	Return the signature { R, s }

The produced digital signature is 64 bytes (32 + 32 bytes) for Ed25519 and 114 bytes (57 + 57 bytes) for Ed448. It holds a compressed point R + the integer s (confirming that the signer knows the msg and the privKey).

EdDSA Verify Signature

The EdDSA signature verification algorithm (RFC 8032) takes as input a text message msg + the signer's EdDSA public key pubKey + the EdDSA signature {R, s} and produces as output a boolean value (valid or invalid signature). EdDSA verification works as follows (with minor simplifications):

EdDSA_signature_verify(msg, pubKey, signature { R, s }) --> valid / invalid

	Calculate h = hash(R + pubKey + msg) mod q

	Calculate P1 = s * G

	Calculate P2 = R + h * pubKey

	Return P1 == P2

How Does it Work?

During the verification the point P1 is calculated as: P1 = s * G.

During the signing s = (r + h * privKey) mod q. Now replace s in the above equation:

	P1 = s * G = (r + h * privKey) mod q * G = r * G + h * privKey * G = R + h * pubKey

The above is exactly the other point P2. If these points P1 and P2 are the same EC point, this proves that the point P1, calculated by the private key matches the point P2, created by its corresponding public key.

ECDSA vs EdDSA

If we compare the signing and verification for EdDSA, we shall find that EdDSA is simpler than ECDSA, easier to understand and to implement. Both signature algorithms have similar security strength for curves with similar key lengths. For the most popular curves (liked edwards25519 and edwards448) the EdDSA algorithm is slightly faster than ECDSA, but this highly depends on the curves used and on the certain implementation. Unlike ECDSA the EdDSA signatures do not provide a way to recover the signer's public key from the signature and the message. Generally, it is considered that EdDSA is recommended for most modern apps.

 Conclusion

 Conclusion

...

 Linux crypt()

 The Linux crypt() KDF Function from glibc

...
...

[TODO: write a few words about the crypt() function in Linux]

See https://en.wikipedia.org/wiki/Crypt_(C)

...
...

 TLS - Example

 TLS (Transport Layer Security) - Examples in Python

...

Connect to HTTPS server and download resource.

Display the server certificate + the public key.

Display info about the TLS cipher suite.

...

 Bcrypt

 Bcrypt Key Derivation

Bcrypt is another cryptographic KDF function, older than Scrypt, and is less resistant to ASIC and GPU attacks. It provides configurable iterations count, but uses constant memory, so it is easier to build hardware-accelerated password crackers.

Bcrypt - Example

You can play with Bcrypt here: https://www.dailycred.com/article/bcrypt-calculator.

[image:]

Storing Algorithm Settings + Salt + Hash Together

In many applications, frameworks and tools (e.g. in the database of WordPress sites), Bcrypt encrypted passwords are stored together with the algorithm settings and salt, into a single string (in certain format), consisting of several parts, separated by $ character. For example, the password p@ss~123 can be stored in the Bcrypt encrypted format like this (several examples are given, to make the pattern apparent):

$2a$07$wHirdrK4OLB0vk9r3fiseeYjQaCZ0bIeKY9qLsNep/I2nZAXbOb7m
$2a$12$UqBxs0PN/u106Fio1.FnDOhSRJztLz364AwpGemp1jt8OnJYNsr.e
$2a$12$8Ov4lfmZZbv8O5YKrXXCu.mdH9Dq9r72C5GnhVZbGNsIzTr8dSUfm

When to Use Bcrypt?

When configured properly Bcrypt is considered a secure KDF function and is widely used in practice. It is considered that Scrypt is more secure than Bcrypt, so modern applications should prefer Scrypt (or Argon2) instead of Bcrypt. Still, this recommendation is disputable, but I personally prefer Argon2.

 Exercises: ECDSA Sign and Verify

 Exercises: Sign / Verify Messages using ECDSA and the NIST P-521 Curve

In this exercise we shall sign and verify messages using the ECDSA digital signature algorithm and the NIST P-521 curve. The NIST P-521 elliptic curve, known also as secp521r1 is 521-bit ECC curve, suitable for ECDSA digital signatures and ECDH key agreement. It uses 521-bit private keys (encoded as 65-66 bytes, 130-132 hex digits) and 1042-bit public keys (uncompressed, encoded as 130-131 bytes, 260-261 hex digits). The produced signature is 132 bytes (264 hex digits).

Sign a Message with ECDSA / P-521

Write a program to sign a message by given private key. The input consists of 2 text lines: message and private key. The message is given as text and the private key is given as hex string (130-132 hex digits). Use the ECDSA deterministic signing (following RFC 6979) and the curve NIST P-521, which also known as secp521r1. Print the output as JSON document, holding the input message + the public key of the signer (as hex string, uncompressed) + the ECDSA digital signature (as hex string).

Sample input:

Message for ECDSA-NIST-521p signing
00135799f9d1f033af26168780bf2503313acff854c44031321d7a29bba96edb3c1b93b9deea55229b1de058196ad69a79c01463e3281d9fcc82afd73aac7fdfa4af

Sample output:

{
 "msg": "Message for ECDSA-NIST-521p signing",
 "pubKey":"0078a6bb6732cb3134d2ca3912b2876fe005b20027037512cf972605f58ce5908471a1f9817c8d24290fcc943951f3113a7ee3716bd95f0b9c7326843a833ac6a0750021f08f88a6bd397525068300801521d2d97fea32f2c8b0c74dc8e231a4dd73252c4a7398e25ab20dba0a9df3df0c256617e004a9623676b9f3f9a3aa21f57c90ce",
 "signature":"00202029ab1a3326fe7d1e9ec36d7fab048e833c6c3cad37e1d5294695d28e9fd5583c23edaeecb596782a4c85bac27780623c1a9216202f3828991cbeebbeb049d9008270ea623d8d26c5ab89b621bac12c7fa8e9193e4057e16617f80cfc4279537f45169fb949deb3f9936400a130f6859aaa9c929e47c66610e59cc71a9f7ea79e81"
}

Verify Message Signature with ECDSA / P-521

Write a program to validate the ECDSA digital signature, created by the previous exercise. The input comes as JSON document, holding the message + the public key (uncompressed, hex string) + the signature. Use the P-521 elliptic curve (secp521r1). Print as output a single word: "valid' or "invalid".

Sample input (correctly signed message):

{
 "msg": "Message for ECDSA-NIST-521p signing",
 "pubKey":"0078a6bb6732cb3134d2ca3912b2876fe005b20027037512cf972605f58ce5908471a1f9817c8d24290fcc943951f3113a7ee3716bd95f0b9c7326843a833ac6a0750021f08f88a6bd397525068300801521d2d97fea32f2c8b0c74dc8e231a4dd73252c4a7398e25ab20dba0a9df3df0c256617e004a9623676b9f3f9a3aa21f57c90ce",
 "signature":"00202029ab1a3326fe7d1e9ec36d7fab048e833c6c3cad37e1d5294695d28e9fd5583c23edaeecb596782a4c85bac27780623c1a9216202f3828991cbeebbeb049d9008270ea623d8d26c5ab89b621bac12c7fa8e9193e4057e16617f80cfc4279537f45169fb949deb3f9936400a130f6859aaa9c929e47c66610e59cc71a9f7ea79e81"
}

Sample output:

valid

Sample input (tampered message):

{
 "msg": "Tampered message",
 "pubKey":"0078a6bb6732cb3134d2ca3912b2876fe005b20027037512cf972605f58ce5908471a1f9817c8d24290fcc943951f3113a7ee3716bd95f0b9c7326843a833ac6a0750021f08f88a6bd397525068300801521d2d97fea32f2c8b0c74dc8e231a4dd73252c4a7398e25ab20dba0a9df3df0c256617e004a9623676b9f3f9a3aa21f57c90ce",
 "signature":"00202029ab1a3326fe7d1e9ec36d7fab048e833c6c3cad37e1d5294695d28e9fd5583c23edaeecb596782a4c85bac27780623c1a9216202f3828991cbeebbeb049d9008270ea623d8d26c5ab89b621bac12c7fa8e9193e4057e16617f80cfc4279537f45169fb949deb3f9936400a130f6859aaa9c929e47c66610e59cc71a9f7ea79e81"
}

Sample output:

invalid

 JavaScript Crypto Libraries

 JavaScript Crypto Libraries

...

Cryptography in JavaScript

	ECDSA with elliptic.js and js-sha3

ECDSA in JavaScript: Generate / Load Keys

npm install elliptic
npm install js-sha3

...

let elliptic = require('elliptic');
let sha3 = require('js-sha3');
let ec = new elliptic.ec('secp256k1');

// let keyPair = ec.genKeyPair(); // Generate random keys
let keyPair = ec.keyFromPrivate(
 "97ddae0f3a25b92268175400149d65d6887b9cefaf28ea2c078e05cdc15a3c0a");
let privKey = keyPair.getPrivate("hex");
let pubKey = keyPair.getPublic();
console.log(`Private key: ${privKey}`);
console.log("Public key :", pubKey.encode("hex").substr(2));
console.log("Public key (compressed):",
 pubKey.encodeCompressed("hex"));

ECDSA in JavaScript: Sign Message

let msg = 'Message for signing';
let msgHash = sha3.keccak256(msg);
let signature =
 ec.sign(msgHash, privKey, "hex", {canonical: true});

console.log(`Msg: ${msg}`);
console.log(`Msg hash: ${msgHash}`);
console.log("Signature:", signature);

Complete example:https://gist.github.com/nakov/1dcbe26988e18f7a4d013b65d8803ffc

ECDSA in JavaScript: Verify Signature

let hexToDecimal = (x) => ec.keyFromPrivate(x, "hex")
 .getPrivate().toString(10);
let pubKeyRecovered = ec.recoverPubKey(
 hexToDecimal(msgHash), signature,
 signature.recoveryParam, "hex");
console.log("Recovered pubKey:",
 pubKeyRecovered.encodeCompressed("hex"));
let validSig = ec.verify(
 msgHash, signature, pubKeyRecovered);
console.log("Signature valid?", validSig);

Complete example:https://gist.github.com/nakov/1dcbe26988e18f7a4d013b65d8803ffc

 Exercises: RSA Encrypt / Decrypt

 Exercises: Encrypt / Decrypt Messages using RSA

In this exercise you shall encrypt and decrypt messages using the RSA public-key cryptosystem.

Encrypt Message with RSA-OAEP

You are given a text message and a RSA public key (in PEM format). Write a program to encrypt the message, using the RSA-OAEP encryption scheme (RSA + PKCS#1 OAEP padding).

Input:

	First line: the input message

	Next few lines: the RSA public key (in the PKCS#8 PEM ASN.1 format)

	The public key length can be 512 bits, 1024 bits, 2048 bits, 3072 bits or 4096 bits.

Output:

	The encrypted message, printed as hex string.

Write your code in programming language of choice.

Sample input:

Secret message
-----BEGIN PUBLIC KEY-----
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAMYhCcGpfoebriBbFaUMMwH3B5t7udir
ODJehnQTPlWLf9SVfQdx0v9ATJ2Rs5kQjdJ/wZYunMBVq6/FhgPZexsCAwEAAQ==
-----END PUBLIC KEY-----

The above input uses a 512-bit RSA public key and a small plain text message, that can fit inside the key length (after the OAEP padding).

Sample output (for the above input):

218dd78c5e14b4d58efd10575b521db46c0caa5c699134abf18bbeeac170cfe446e25d0d82257082539e4ccd3e0aa8bffc1b07d2bde9e635a7b9b7fc6cf4c266

Note: the above output should be different at each execution due to the randomness injected by the OAEP padding algorithm.

Decrypt a Message with RSA-OAEP

You are given a RSA-OAEP-encrypted ciphertext (as hex string) and a RSA private key (in PEM format). Write a program to decrypt the message, using the RSA-OAEP encryption scheme (RSA + PKCS#1 OAEP padding).

Input:

	First line: the ciphertext (the encrypted message), given as hex string

	Next few lines: the RSA private key (in the PKCS#8 PEM ASN.1 format)

Output:

	Print the decrypted message as plain text

	Print Decryption failed! in case of problem

Write your code in programming language of choice.

Sample input:

218dd78c5e14b4d58efd10575b521db46c0caa5c699134abf18bbeeac170cfe446e25d0d82257082539e4ccd3e0aa8bffc1b07d2bde9e635a7b9b7fc6cf4c266
-----BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAJBAMYhCcGpfoebriBbFaUMMwH3B5t7udirODJehnQTPlWLf9SVfQdx
0v9ATJ2Rs5kQjdJ/wZYunMBVq6/FhgPZexsCAwEAAQJAbNSzBkTzMswqHq3Juupz
jk3CSP7ye/i5Grnfgx0a7WOGpVrEDQNo0iihEf5pRAfaazEdfJX2Tj+auuv06392
kQIhAOeJahRwOt8cYroLZzHHf7LWQglRaTbtKShqmbLdBZMzAiEA2xADyA3xGXcl
txN0DOfSycwFyqkdlfsuyAwKibPteHkCIQDJ1P6UzHR1UwA434HYYejOU3mDN+V4
zOoI4kwTIBohAwIgLrqv09EFiUUdSnxf2RDqqhlXcu+4W/IE/K904AL9uSECICeT
tkAnJHB7k6fvox6ErJV53w06bUF1jGw8yHuaCcHX
-----END RSA PRIVATE KEY-----

The above input uses a 512-bit RSA private key and an encrypted ciphertext of the same length.

Sample output (for the above input):

Secret message

Another sample input (wrong 512-bit private key):

218dd78c5e14b4d58efd10575b521db46c0caa5c699134abf18bbeeac170cfe446e25d0d82257082539e4ccd3e0aa8bffc1b07d2bde9e635a7b9b7fc6cf4c266
-----BEGIN RSA PRIVATE KEY-----
MIIBOQIBAAJBAJd0kbrC4AxpcqBgWVPpb8IoI/kdQkF1twrfQtoMkHgB71vpY6Sg
68CUA7Ejq/dbAHlvFdXqwEK9vXH3kFpc8pcCAwEAAQJAaFrlXm2Pun2dgWthoTOi
0YCe6LKESF43dMJIab1mfYiltrSpGaoTXLvHR+NaAgqcr9KAH24Mi05ttUBcWRsI
QQIhAOLTSyeDZnq5rqdwBlU8p6USpeImRhWRNcCHA/QLxcaPAiEAqu+O1p1YB3Mp
GKgB9PvZE3TZqmlgtEFmSMYinF3g13kCIF9FjpCXMYkkysZLWG2e32+HaKOXneJb
Lq+iRjfQZg7jAiBcm6D1YRV6I8gWFZ/JzFBVHC95BdJgljYGI2JI+QuBcQIgLJjH
IPctSCUtukz+7fdeOdw/0FINcUGvnQyuEK34UxE=
-----END RSA PRIVATE KEY-----

The corresponding output should be:

Decryption failed!

Note that the RSA-OAEP padding algorithm has built-in checksum, which allows to detect incorrect decryption attempts, but it is not an authenticated encryption scheme.

* Implement Hybrid Encryption / Decryption with RSA-KEM

Write a program to encrypt a large message (bigger than the RSA key length, e.g. a PDF document) using the RSA-KEM hybrid encryption scheme with AES symmetric encryption (use block mode of choice, e.g. GCM or CTR).

Hint:

	Check this example first: https://github.com/digitalbazaar/forge#rsakem.

	Note that in some languages it is hard to find and RSA-KEM implementation, so you can skip this exercise or use another hybrid encryption scheme (e.g. RSA + AES + HMAC).

Input:

	The message for encryption

	RSA public key (in PEM format)

Output:

	The encrypted ciphertext (hex string)

	The random IV salt for the AES cipher (hex string)

	The authentication tag / MAC for the encrypted message (hex string)

	The encapsulated secret key for the AES algorithm (hex string)

Write a program to decrypt given encrypted message, produced by the previous exercise, using the RSA-KEM hybrid encryption scheme with AES symmetric encryption (use block mode of choice, e.g. GCM or CTR).

Input:

	The encrypted ciphertext (hex string)

	The random IV salt for the AES cipher (hex string)

	The authentication tag / MAC for the encrypted message (hex string)

	The encapsulated secret key for the AES algorithm (hex string)

Output:

	The decrypted original plaintext message

	Print Decryption failed! if the message decryption is not successful (e.g. wrong password)

 Welcome

 Practical Cryptography for Developers - Free Book

[image: Practical Cryptography for Developers - Free Book by Svetlin Nakov - front cover]

A modern practical book about cryptography for developers with code examples, covering core concepts like: hashes (like SHA-3 and BLAKE2), MAC codes (like HMAC and GMAC), key derivation functions (like Scrypt, Argon2), key agreement protocols (like DHKE, ECDH), symmetric ciphers (like AES and ChaCha20, cipher block modes, authenticated encryption, AEAD, AES-GCM, ChaCha20-Poly1305), asymmetric ciphers and public-key cryptosystems (RSA, ECC, ECIES), elliptic curve cryptography (ECC, secp256k1, curve25519), digital signatures (ECDSA and EdDSA), secure random numbers (PRNG, CSRNG) and quantum-safe cryptography, along with crypto libraries and developer tools, with a lots of code examples in Python and other languages.

Author: Svetlin Nakov, PhD - http://www.nakov.com

This book is free and open-source, published under the MIT license.

Official GitHub repo: https://github.com/nakov/practical-cryptography-for-developers-book.

Sofia, November 2018

Summary

	Welcome

	Preface

	Cryptography - Overview

	Hash Functions
	Crypto Hashes and Collisions

	Hash Functions: Applications

	Secure Hash Algorithms

	Hash Functions - Examples

	Exercises: Calculate Hashes

	Proof-of-Work Hash Functions

	MAC and Key Derivation
	HMAC and Key Derivation

	HMAC Calculation - Examples

	Exercises: Calculate HMAC

	KDF: Deriving Key from Password

	PBKDF2

	Modern Key Derivation Functions

	Scrypt

	Bcrypt

	Linux crypt()

	Argon2

	Password Encryption

	Exercises: Password Encryption

	Secure Random Generators
	Pseudo-Random Numbers - Examples

	Secure Random Generators (CSPRNG)

	Exercises: Pseudo-Random Generator

	Key Exchange and DHKE
	Diffie–Hellman Key Exchange

	DHKE - Examples

	Exercises: DHKE Key Exchange

	Encryption: Symmetric and Asymmetric

	Symmetric Key Ciphers
	Cipher Block Modes

	Popular Symmetric Algorithms

	The AES Cipher - Concepts

	AES Encrypt / Decrypt - Examples

	Ethereum Wallet Encryption

	Exercises: AES Encrypt / Decrypt

	ChaCha20-Poly1305

	Exercises: ChaCha20-Poly1305

	Asymmetric Key Ciphers
	The RSA Cryptosystem - Concepts

	RSA Encrypt / Decrypt - Examples

	Exercises: RSA Encrypt / Decrypt

	Elliptic Curve Cryptography (ECC)

	ECDH Key Exchange

	ECDH Key Exchange - Examples

	Exercises: ECDH Key Exchange

	ECC Encryption / Decryption

	ECIES Hybrid Encryption Scheme

	ECIES Encryption - Example

	Exercises: ECIES Encrypt / Decrypt

	Digital Signatures
	RSA Signatures

	RSA: Sign / Verify - Examples

	Exercises: RSA Sign and Verify

	ECDSA: Elliptic Curve Signatures

	ECDSA: Sign / Verify - Examples

	Exercises: ECDSA Sign and Verify

	EdDSA and Ed25519

	EdDSA: Sign / Verify - Examples

	Exercises: EdDSA Sign and Verify

	Quantum-Safe Cryptography
	Quantum-Safe Signatures - Example

	More Cryptographic Concepts
	Digital Certificates - Example

	TLS - Example

	One-Time Passwords (OTP) - Example

	Crypto Libraries for Developers
	JavaScript Crypto Libraries

	Python Crypto Libraries

	C# Crypto Libraries

	Java Crypto Libraries

	Conclusion

Tags: cryptography, free, book, Nakov, Svetlin Nakov, hashes, hash function, SHA-256, SHA3, BLAKE2, RIPEMD, MAC, message authentication code, HMAC, KDF, key derivation, key derivation function, PBKDF2, Scrypt, Bcrypt, Argon2, password hashing, random generator, pseudo-random numbers, CSPRNG, secure random generator, key exchange, key agreement, Diffie-Hellman, DHKE, ECDH, symmetric ciphers, asymmetric ciphers, public key cryptosystems, symmetric cryptography, AES, Rijndael, cipher block mode, AES-CTR, AES-GCM, ChaCha20-Poly1305, authenticated encryption, encryption scheme, public key cryptography, RSA, ECC, elliptic curves, secp256k1, curve25519, EC points, EC domain parameters, ECDH key agreement, asymmetric encryption scheme, hybrid encryption, ECIES, digital signature, RSA signature, DSA, ECDSA, EdDSA, ElGammal signature, Schnorr signature, quantum-safe cryptography, digital certificates, TLS, OAuth, multi-factor authentication, crypto libraries, Python cryptography, JavaScript cryptography, C# cryptography, Java cryptography, C++ cryptography, PHP cryptography.

 Cipher Block Modes

 Block Ciphers, Stream Ciphers, Block Modes and Padding

In cryptography block ciphers (like AES) are designed to encrypt a block of data of fixed size (e.g. 128 bits). The size of the input block is usually the same as the size of the encrypted output block, while the key length may be different.

Stream ciphers are more flexible: they are designed to encrypt data of arbitrary size (e.g. a PDF document), that may sometimes come as a stream (sequence of bytes or frames, e.g. video streaming).

Most of the popular symmetric key encryption algorithms are block ciphers, but cryptographers have proposed several schemes to transform a block cipher into a stream cipher and encrypt data of arbitrary size. These schemes are known as "block cipher modes of operation".

Block Cipher Modes (CBC, CTR, GCM, ...)

The main idea behind the block cipher modes (like CBC, CFB, OFB, CTR, EAX, CCM and GCM) is to repeatedly apply a cipher's single-block encryption / decryption to securely encrypt / decrypt amounts of data larger than a block.

Some block modes (like CBC) require the input to be split into blocks and the final block to be padded to the block size using a padding algorithm (e.g. add a special padding character). Other block modes (like CTR, CFB, OFB, CCM, EAX and GCM) do not require padding at all, because they perform XOR between portions of the plaintext and the internal cipher's state at each step.

Basically, encrypting a large input data works like this: the encryption algorithm state is initialized, then the first portion of data (e.g. a block or part of block) is encrypted, then the encryption state is transformed (using the encryption key and other parameters), then the next portion is encrypted, then the encryption state is transformed again and the next portion is then encrypted and so on, until all the input data is processed. The decryption works in a very similar way.

This is what developers should know about the "block cipher modes of operation" in order to use them correctly.

	Commonly used secure block modes are CBC (Cipher Block Chaining), CTR (Counter) and GCM (Galois/Counter Mode), which require a random initialization vector (IV) at the start.

	The "Counter (CTR)" block mode is good choice in the most cases because of strong security, arbitrary input data length (without padding) and parallel processing capabilities. It does not provide authentication and integrity, just encryption.

	The GCM (Galois/Counter Mode) block mode takes all the advantages of the CTR mode and adds message authentication (produces a cryptographical message authentication tag). GCM is fast and efficient way to implement authenticated encryption in symmetric ciphers and it is highly recommended in the general case.

	In CBC mode many padding algorithms can be used to make the last block the same length after splitting the input data into blocks. Most applications use the PKCS7 padding scheme or ANSI X.923.

	Well-known insecure block mode is ECB (Electronic Codebook), which encrypts equal input blocks as equal output blocks (does not provide cryptographic diffusion). Don't use it! It may compromise the entire encryption.

The diagram below illustrates how portions (blocks) of the plaintext are encrypted one after another in the CTR block mode of operation using a block cipher:

[image:]

For each block in CTR mode a new unpredictable keystream block is generated based on the initial vector (IV, sometimes called "nonce") + the current counter (01, 02, 03, ...) + the secret encryption key and the input block is merged by XOR with the current keystream block to produce the output block. In the CTR mode the final portion of the input data can be shorter then the cipher block size, so padding is not needed. The input data (before encryption) and the output data (after encryption) have the same length.

The CTR and GCM encryption modes have many advantages: they are secure (no significant flaws are currently known), can encrypt data of arbitrary length without padding, can encrypt and decrypt the blocks in parallel (in multi-core CPUs) and provide random (unordered) access to the encrypted blocks, so they are suitable for encrypting crypto-wallets, documents and streaming video (where users can seek by time). GCM provides also message authentication and is the recommended choice for cipher block mode in the general case.

Note that the GCM, CTR and other block modes reveal the length of the original message. The length of the plaintext message is the same as the ciphertext length. If you want to avoid revealing the original plaintext length, you can add some random bytes to the plaintext before the encryption and remove them after decryption (this will be some kind of padding).

Authenticated Encryption

In cryptography the concept of "authenticated encryption" (AE) refers to a scheme to encrypt data and simultaneously calculate an authentication code (authentication tag / MAC), used to provide message authenticity and integrity. If authenticated encryption scheme is used, at the moment of decryption it will be known if the decryption is successful (i.e. whether the decryption key / password was correct and whether the encrypted data was not tampered). Authenticated encryption (AE) is related to the similar concept authenticated encryption with associated data (AEAD), which a more secure variant of AE. AEAD binds associated data (AD) to the ciphertext and to the context where it's supposed to appear, so that attempts to "cut-and-paste" a valid ciphertext into a different context can be detected and rejected.

Some encryption schemes (like ChaCha20-Poly1305 and AES-GCM) provide integrated authenticated encryption (AEAD), while others (like AES-CBC and AES-CTR) need authentication to be added additionally.

 ECDSA: Elliptic Curve Signatures

 ECDSA: Elliptic Curve Digital Signatures

The ECDSA (Elliptic Curve Digital Signature Algorithm) is a cryptographically secure digital signature scheme, based on the elliptic-curve cryptography (ECC). ECDSA relies on the math of the cyclic groups of elliptic curves over finite fields and on the difficulty of the ECDLP problem (elliptic-curve discrete logarithm problem). The ECDSA sign / verify algorithm relies on EC point multiplication and works as described below. ECDSA keys and signatures are shorter than in RSA for the same security level. A 256-bit ECDSA signature has the same security strength like 3072-bit RSA signature.

ECDSA uses cryptographic elliptic curves (EC) over finite fields in the classical Weierstrass form. These curves are described by their EC domain parameters, specified by various cryptographic standards such as SECG: SEC 2 and Brainpool (RFC 5639). Elliptic curves, used in cryptography, define:

	Generator point G, used for scalar multiplication on the curve (multiply integer by EC point)

	Order n of the subgroup of EC points, generated by G, which defines the length of the private keys (e.g. 256 bits)

For example, the 256-bit elliptic curve secp256k1 has:

	Order n = 115792089237316195423570985008687907852837564279074904382605163141518161494337 (prime number)

	Generator point G {x = 55066263022277343669578718895168534326250603453777594175500187360389116729240, y = 32670510020758816978083085130507043184471273380659243275938904335757337482424}

Key Generation

The ECDSA key-pair consists of:

	private key (integer): privKey

	public key (EC point): pubKey = privKey * G

The private key is generated as a random integer in the range [0...n-1]. The public key pubKey is a point on the elliptic curve, calculated by the EC point multiplication: pubKey = privKey * G (the private key, multiplied by the generator point G).

The public key EC point {x, y} can be compressed to just one of the coordinates + 1 bit (parity). For the secp256k1 curve, the private key is 256-bit integer (32 bytes) and the compressed public key is 257-bit integer (~ 33 bytes).

ECDSA Sign

The ECDSA signing algorithm (RFC 6979) takes as input a message msg + a private key privKey and produces as output a signature, which consists of pair of integers {r, s}. The ECDSA signing algorithm is based on the ElGamal signature scheme and works as follows (with minor simplifications):

	Calculate the message hash, using a cryptographic hash function like SHA-256: h = hash(msg)

	Generate securely a random number k in the range [1..n-1]
	In case of deterministic-ECDSA, the value k is HMAC-derived from h + privKey (see RFC 6979)

	Calculate the random point R = k * G and take its x-coordinate: r = R.x

	Calculate the signature proof: s = k−1∗(h+r∗privKey)(modn)k^{-1} * (h + r * privKey) \pmod nk−1∗(h+r∗privKey)(modn)
	The modular inverse k−1(modn)k^{-1} \pmod nk−1(modn) is an integer, such that k∗k−1≡1(modn)k * k^{-1} \equiv 1 \pmod n k∗k−1≡1(modn)

	Return the signature {r, s}.

The calculated signature {r, s} is a pair of integers, each in the range [1...n-1]. It encodes the random point R = k * G, along with a proof s, confirming that the signer knows the message h and the private key privKey. The proof s is by idea verifiable using the corresponding pubKey.

ECDSA signatures are 2 times longer than the signer's private key for the curve used during the signing process. For example, for 256-bit elliptic curves (like secp256k1) the ECDSA signature is 512 bits (64 bytes) and for 521-bit curves (like secp521r1) the signature is 1042 bits.

ECDSA Verify Signature

The algorithm to verify a ECDSA signature takes as input the signed message msg + the signature {r, s} produced from the signing algorithm + the public key pubKey, corresponding to the signer's private key. The output is boolean value: valid or invalid signature. The ECDSA signature verify algorithm works as follows (with minor simplifications):

	Calculate the message hash, with the same cryptographic hash function used during the signing: h = hash(msg)

	Calculate the modular inverse of the signature proof: s1 = s−1(modn)s^{-1} \pmod ns−1(modn)

	Recover the random point used during the signing: R' = (h * s1) * G + (r * s1) * pubKey

	Take from R' its x-coordinate: r' = R'.x

	Calculate the signature validation result by comparing whether r' == r

The general idea of the signature verification is to recover the point R' using the public key and check whether it is same point R, generated randomly during the signing process.

How Does it Work?

The ECDSA signature {r, s} has the following simple explanation:

	The signing signing encodes a random point R (represented by its x-coordinate only) through elliptic-curve transformations using the private key privKey and the message hash h into a number s, which is the proof that the message signer knows the private key privKey. The signature {r, s} cannot reveal the private key due to the difficulty of the ECDLP problem.

	The signature verification decodes the proof number s from the signature back to its original point R, using the public key pubKey and the message hash h and compares the x-coordinate of the recovered R with the r value from the signature.

The Math behind the ECDSA Sign / Verify

Read this section only if you like math. Most developer may skip it.

How does the above sign / verify scheme work? It is not obvious, but let's play a bit with the equations.

The equation behind the recovering of the point R', calculated during the signature verification, can be transformed by replacing the pubKey with privKey * G as follows:

R' = (h * s1) * G + (r * s1) * pubKey =
 = (h * s1) * G + (r * s1) * privKey * G =
 = (h + r * privKey) * s1 * G

If we take the number s = k−1∗(h+r∗privKey)(modn)k^{-1} * (h + r * privKey) \pmod nk−1∗(h+r∗privKey)(modn), calculated during the signing process, we can calculate s1 = s−1(modn)s^{-1} \pmod ns−1(modn) like this:

s1 = s−1(modn)s^{-1} \pmod ns−1(modn) =
 = (k−1∗(h+r∗privKey))−1(modn)(k^{-1} * (h + r * privKey))^{-1} \pmod n(k−1∗(h+r∗privKey))−1(modn) =
 = k∗(h+r∗privKey)−1(modn)k * (h + r * privKey)^{-1} \pmod nk∗(h+r∗privKey)−1(modn)

Now, replace s1 in the point R'.

R' = (h + r * privKey) * s1 * G =
 = (h+r∗privKey)∗k∗(h+r∗privKey)−1(modn)(h + r * privKey) * k * (h + r * privKey)^{-1} \pmod n(h+r∗privKey)∗k∗(h+r∗privKey)−1(modn) * G =
 = k * G

The final step is to compare the point R' (decoded by the pubKey) with the point R (encoded by the privKey). The algorithm in fact compares only the x-coordinates of R' and R: the integers r' and r.

It is expected that r' == r if the signature is valid and r' ≠ r if the signature or the message or the public key is incorrect.

ECDSA: Public Key Recovery from Signature

It is important to know that the ECDSA signature scheme allows the public key to be recovered from the signed message together with the signature. The recovery process is based on some mathematical computations (described in the SECG: SEC 1 standard) and returns 0, 1 or 2 possible EC points that are valid public keys, corresponding to the signature. To avoid this ambiguity, some ECDSA implementations add one additional bit v to the signature during the signing process and it takes the form {r, s, v}. From this extended ECDSA signature {r, s, v} + the signed message, the signer's public key can be restored with confidence.

The public key recovery from the ECDSA signature is very useful in bandwidth constrained or storage constrained environments (such as blockchain systems), when transmission or storage of the public keys cannot be afforded. For example, the Ethereum blockchain uses extended signatures {r, s, v} for the signed transactions on the chain to save storage and bandwidth.

Public key recovery is possible for signatures, based on the ElGamal signature scheme (such as DSA and ECDSA).

 RSA Encrypt / Decrypt - Examples

 RSA Encryption / Decryption - Examples in Python

Now let's demonstrate how the RSA algorithms works by a simple example in Python. The below code will generate random RSA key-pair, will encrypt a short message and will decrypt it back to its original form, using the RSA-OAEP padding scheme.

First, install the pycryptodome package, which is a powerful Python library of low-level cryptographic primitives (hashes, MAC codes, key-derivation, symmetric and asymmetric ciphers, digital signatures):

pip install pycryptodome

RSA Key Generation

Now, let's write the Python code. First, generate the RSA keys (1024-bit) and print them on the console (as hex numbers and in the PKCS#8 PEM ASN.1 format):

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
import binascii

keyPair = RSA.generate(3072)

pubKey = keyPair.publickey()
print(f"Public key: (n={hex(pubKey.n)}, e={hex(pubKey.e)})")
pubKeyPEM = pubKey.exportKey()
print(pubKeyPEM.decode('ascii'))

print(f"Private key: (n={hex(pubKey.n)}, d={hex(keyPair.d)})")
privKeyPEM = keyPair.exportKey()
print(privKeyPEM.decode('ascii'))

We use short key length to keep the sample input short, but in a real world scenario it is recommended to use 3072-bit or 4096-bit keys.

RSA Encryption

Next, encrypt the message using RSA-OAEP encryption scheme (RSA with PKCS#1 OAEP padding) with the RSA public key:

msg = b'A message for encryption'
encryptor = PKCS1_OAEP.new(pubKey)
encrypted = encryptor.encrypt(msg)
print("Encrypted:", binascii.hexlify(encrypted))

RSA Decryption

Finally, decrypt the message using using RSA-OAEP with the RSA private key:

decryptor = PKCS1_OAEP.new(keyPair)
decrypted = decryptor.decrypt(encrypted)
print('Decrypted:', decrypted)

Sample Output

A sample output of the code execution for the entire example is given below:

Public key: (n=0x9a11485bccb9569410a848fb1afdf2a81b17c1fa9f9eb546fd1deb873b49b693a4edf20eb8362c085cd5b28ba109dbad2bd257a013f57f745402e245b0cc2d553c7b2b8dbba57ebda7f84cfb32b7d9c254f03dbd0188e4b8e40c47b64c1bd2572834b936ffc3da9953657ef8bee80c49c2c12933c8a34804a00eb4c81248e01f, e=0x10001)
-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCaEUhbzLlWlBCoSPsa/fKoGxfB
+p+etUb9HeuHO0m2k6Tt8g64NiwIXNWyi6EJ260r0legE/V/dFQC4kWwzC1VPHsr
jbulfr2n+Ez7MrfZwlTwPb0BiOS45AxHtkwb0lcoNLk2/8PamVNlfvi+6AxJwsEp
M8ijSASgDrTIEkjgHwIDAQAB
-----END PUBLIC KEY-----
Private key: (n=0x9a11485bccb9569410a848fb1afdf2a81b17c1fa9f9eb546fd1deb873b49b693a4edf20eb8362c085cd5b28ba109dbad2bd257a013f57f745402e245b0cc2d553c7b2b8dbba57ebda7f84cfb32b7d9c254f03dbd0188e4b8e40c47b64c1bd2572834b936ffc3da9953657ef8bee80c49c2c12933c8a34804a00eb4c81248e01f, d=0x318ab12be3cf0d4a1b7921cead454fcc42ba070462639483394d6fb9529547827e9c8d23b294a8e01f8a1019da34e350f2307740e06a270bef1fe646e6ad213e31b528fdd5f5d03e633c07c44755ed622a629d79e822c095ebdf9cc80e517b5566dd3d3e5b16ec737987337a0e497fdba4b5ad97af41c1c3cdd87542a4637d81)
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQCaEUhbzLlWlBCoSPsa/fKoGxfB+p+etUb9HeuHO0m2k6Tt8g64
NiwIXNWyi6EJ260r0legE/V/dFQC4kWwzC1VPHsrjbulfr2n+Ez7MrfZwlTwPb0B
iOS45AxHtkwb0lcoNLk2/8PamVNlfvi+6AxJwsEpM8ijSASgDrTIEkjgHwIDAQAB
AoGAMYqxK+PPDUobeSHOrUVPzEK6BwRiY5SDOU1vuVKVR4J+nI0jspSo4B+KEBna
NONQ8jB3QOBqJwvvH+ZG5q0hPjG1KP3V9dA+YzwHxEdV7WIqYp156CLAlevfnMgO
UXtVZt09PlsW7HN5hzN6Dkl/26S1rZevQcHDzdh1QqRjfYECQQDGDUIQXlOiAcGo
d5YqAGpWe0wzJ0UypeqZcqS9MVe9OkjjopCkkYntifdN/1oG7S/1KUMtLoGHqntb
c428zOO/AkEAxyV0cmuJbFdfM0x2XhZ+ge/7putIx76RHDOjBpM6VQXpLEFj54kB
qGLAB7SXr7P4AFrEjfckJOp2YMI5BreboQJAb3EUZHt/WeDdJLutzpKPQ3x7oykM
wfQkbxXYZvD16u96BkT6WO/gCb6hXs05zj32x1/hgfHyRvGCGjKKZdtwpwJBAJ74
y0g7h+wwoxJ0S1k4Y6yeQikxUVwCSBxXLCCnjr0ohsaJPJMrz2L30YtVInFkHOlL
i/Q4AWZmtDDxWkx+bYECQG8e6bGoszuX5xjvhEBslIws9+nMzMuYBR8HvhLo58B5
N8dk3nIsLs3UncKLiiWubMAciU5jUxZoqWpRXXwECKE=
-----END RSA PRIVATE KEY-----
Encrypted: b'99b331c4e1c8f3fa227aacd57c85f38b7b7461574701b427758ee4f94b1e07d791ab70b55d672ff55dbe133ac0bea16fc23ea84636365f605a9b645e0861ee11d68a7550be8eb35e85a4bde6d73b0b956d000866425511c7920cdc8a3786a4f1cb1986a875373975e158d74e11ad751594de593a35de765fe329c0d3dfbbfedc'
Decrypted: b'A message for encryption'

Notes:

	If you run the above example, your output will be different, because it generates different random RSA key-pair at each execution.

	Even if you encrypt the same message several times with the same public key, you will get different output. This is because the OAEP padding algorithm injects some randomness with the padding.

	If you try to encrypt larger messages, you will get and exception, because the 1024-bit key limits the maximum message length.

Now play with the above code, modify it and run it to learn how RSA works in action.

