

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.7.3

1.8

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

Table	of	Contents
Welcome

Preface

Cryptography	-	Overview

Hash	Functions

Crypto	Hashes	and	Collisions

Hash	Functions:	Applications

Secure	Hash	Algorithms

Hash	Functions	-	Examples

Exercises:	Calculate	Hashes

Proof-of-Work	Hash	Functions

MAC	and	Key	Derivation

HMAC	and	Key	Derivation

HMAC	Calculation	-	Examples

Exercises:	Calculate	HMAC

KDF:	Deriving	Key	from	Password

PBKDF2

Modern	Key	Derivation	Functions

Scrypt

Bcrypt

Linux	crypt()

Argon2

Password	Encryption

Exercises:	Password	Encryption

Secure	Random	Generators

Pseudo-Random	Numbers	-	Examples

Secure	Random	Generators	(CSPRNG)

Exercises:	Pseudo-Random	Generator

Key	Exchange	and	DHKE

Diffie–Hellman	Key	Exchange

DHKE	-	Examples

Exercises:	DHKE	Key	Exchange

Encryption:	Symmetric	and	Asymmetric

Symmetric	Key	Ciphers

Cipher	Block	Modes

Popular	Symmetric	Algorithms

The	AES	Cipher	-	Concepts

AES	Encrypt	/	Decrypt	-	Examples

Ethereum	Wallet	Encryption

2

1.9.6

1.9.7

1.9.8

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.10.8

1.10.9

1.10.10

1.10.11

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.6

1.11.7

1.11.8

1.11.9

1.12

1.12.1

1.13

1.13.1

1.13.2

1.13.3

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.15

Exercises:	AES	Encrypt	/	Decrypt

ChaCha20-Poly1305

Exercises:	ChaCha20-Poly1305

Asymmetric	Key	Ciphers

The	RSA	Cryptosystem	-	Concepts

RSA	Encrypt	/	Decrypt	-	Examples

Exercises:	RSA	Encrypt	/	Decrypt

Elliptic	Curve	Cryptography	(ECC)

ECDH	Key	Exchange

ECDH	Key	Exchange	-	Examples

Exercises:	ECDH	Key	Exchange

ECC	Encryption	/	Decryption

ECIES	Hybrid	Encryption	Scheme

ECIES	Encryption	-	Example

Exercises:	ECIES	Encrypt	/	Decrypt

Digital	Signatures

RSA	Signatures

RSA:	Sign	/	Verify	-	Examples

Exercises:	RSA	Sign	and	Verify

ECDSA:	Elliptic	Curve	Signatures

ECDSA:	Sign	/	Verify	-	Examples

Exercises:	ECDSA	Sign	and	Verify

EdDSA	and	Ed25519

EdDSA:	Sign	/	Verify	-	Examples

Exercises:	EdDSA	Sign	and	Verify

Quantum-Safe	Cryptography

Quantum-Safe	Signatures	-	Example

More	Cryptographic	Concepts

Digital	Certificates	-	Example

TLS	-	Example

One-Time	Passwords	(OTP)	-	Example

Crypto	Libraries	for	Developers

JavaScript	Crypto	Libraries

Python	Crypto	Libraries

C#	Crypto	Libraries

Java	Crypto	Libraries

Conclusion

3

4

Practical	Cryptography	for	Developers	-	Free	Book
A	modern	practical	book	about	cryptography	for	developers	with	code	examples,	covering	core	concepts	like:
hashes	(like	SHA-3	and	BLAKE2),	MAC	codes	(like	HMAC	and	GMAC),	key	derivation	functions	(like	Scrypt,
Argon2),	key	agreement	protocols	(like	DHKE,	ECDH),	symmetric	ciphers	(like	AES	and	ChaCha20,	cipher	block
modes,	authenticated	encryption,	AEAD,	AES-GCM,	ChaCha20-Poly1305),	asymmetric	ciphers	and	public-key
cryptosystems	(RSA,	ECC,	ECIES),	elliptic	curve	cryptography	(ECC,	secp256k1,	curve25519),	digital
signatures	(ECDSA	and	EdDSA),	secure	random	numbers	(PRNG,	CSRNG)	and	quantum-safe	cryptography,
along	with	crypto	libraries	and	developer	tools,	with	a	lots	of	code	examples	in	Python	and	other	languages.

Author:	Svetlin	Nakov,	PhD	-	http://www.nakov.com

This	book	is	free	and	open-source,	published	under	the	MIT	license.

Official	GitHub	repo:	https://github.com/nakov/practical-cryptography-for-developers-book.

Sofia,	November	2018

Summary
Welcome
Preface
Cryptography	-	Overview
Hash	Functions

Crypto	Hashes	and	Collisions
Hash	Functions:	Applications
Secure	Hash	Algorithms
Hash	Functions	-	Examples
Exercises:	Calculate	Hashes
Proof-of-Work	Hash	Functions

MAC	and	Key	Derivation
HMAC	and	Key	Derivation
HMAC	Calculation	-	Examples
Exercises:	Calculate	HMAC
KDF:	Deriving	Key	from	Password
PBKDF2
Modern	Key	Derivation	Functions
Scrypt
Bcrypt
Linux	crypt()
Argon2
Password	Encryption
Exercises:	Password	Encryption

Secure	Random	Generators
Pseudo-Random	Numbers	-	Examples
Secure	Random	Generators	(CSPRNG)
Exercises:	Pseudo-Random	Generator

Key	Exchange	and	DHKE
Diffie–Hellman	Key	Exchange
DHKE	-	Examples
Exercises:	DHKE	Key	Exchange

Encryption:	Symmetric	and	Asymmetric

Welcome

5

http://www.nakov.com
https://opensource.org/licenses/MIT
https://github.com/nakov/practical-cryptography-for-developers-book

Symmetric	Key	Ciphers
Cipher	Block	Modes
Popular	Symmetric	Algorithms
The	AES	Cipher	-	Concepts
AES	Encrypt	/	Decrypt	-	Examples
Ethereum	Wallet	Encryption
Exercises:	AES	Encrypt	/	Decrypt
ChaCha20-Poly1305
Exercises:	ChaCha20-Poly1305

Asymmetric	Key	Ciphers
The	RSA	Cryptosystem	-	Concepts
RSA	Encrypt	/	Decrypt	-	Examples
Exercises:	RSA	Encrypt	/	Decrypt
Elliptic	Curve	Cryptography	(ECC)
ECDH	Key	Exchange
ECDH	Key	Exchange	-	Examples
Exercises:	ECDH	Key	Exchange
ECC	Encryption	/	Decryption
ECIES	Hybrid	Encryption	Scheme
ECIES	Encryption	-	Example
Exercises:	ECIES	Encrypt	/	Decrypt

Digital	Signatures
RSA	Signatures
RSA:	Sign	/	Verify	-	Examples
Exercises:	RSA	Sign	and	Verify
ECDSA:	Elliptic	Curve	Signatures
ECDSA:	Sign	/	Verify	-	Examples
Exercises:	ECDSA	Sign	and	Verify
EdDSA	and	Ed25519
EdDSA:	Sign	/	Verify	-	Examples
Exercises:	EdDSA	Sign	and	Verify

Quantum-Safe	Cryptography
Quantum-Safe	Signatures	-	Example

More	Cryptographic	Concepts
Digital	Certificates	-	Example
TLS	-	Example
One-Time	Passwords	(OTP)	-	Example

Crypto	Libraries	for	Developers
JavaScript	Crypto	Libraries
Python	Crypto	Libraries
C#	Crypto	Libraries
Java	Crypto	Libraries

Conclusion

Tags:	cryptography,	free,	book,	Nakov,	Svetlin	Nakov,	hashes,	hash	function,	SHA-256,	SHA3,	BLAKE2,	RIPEMD,
MAC,	message	authentication	code,	HMAC,	KDF,	key	derivation,	key	derivation	function,	PBKDF2,	Scrypt,	Bcrypt,
Argon2,	password	hashing,	random	generator,	pseudo-random	numbers,	CSPRNG,	secure	random	generator,	key
exchange,	key	agreement,	Diffie-Hellman,	DHKE,	ECDH,	symmetric	ciphers,	asymmetric	ciphers,	public	key
cryptosystems,	symmetric	cryptography,	AES,	Rijndael,	cipher	block	mode,	AES-CTR,	AES-GCM,	ChaCha20-
Poly1305,	authenticated	encryption,	encryption	scheme,	public	key	cryptography,	RSA,	ECC,	elliptic	curves,
secp256k1,	curve25519,	EC	points,	EC	domain	parameters,	ECDH	key	agreement,	asymmetric	encryption	scheme,

Welcome

6

hybrid	encryption,	ECIES,	digital	signature,	RSA	signature,	DSA,	ECDSA,	EdDSA,	ElGammal	signature,	Schnorr
signature,	quantum-safe	cryptography,	digital	certificates,	TLS,	OAuth,	multi-factor	authentication,	crypto	libraries,
Python	cryptography,	JavaScript	cryptography,	C#	cryptography,	Java	cryptography,	C++	cryptography,	PHP
cryptography.

Welcome

7

Preface
...

Most	books	about	cryptography	are	written	either	in	too	academic	style	with	a	lot	of	theory,	like
http://cacr.uwaterloo.ca/hac.

...

Others	are	too	old:	...

...

Others	are	not	bad,	but	not	free:

https://leanpub.com/crypto

https://www.amazon.com/Cryptography-Developers-Tom-St-Denis/dp/1597491047

Crypto	libraries	come	with	limited	and	not	consistently	organized	documentation,	e.g.	the	Crypto++	Wiki
https://www.cryptopp.com/wiki/Main_page.

...

Now	I	am	happy	to	publish	a	developer-friendly	practical	cryptography	book.	It	holds	just	what	developers	need
to	know	in	order	to	use	cryptography	in	their	every	day	work.	It	does	not	cover	the	internals	of	the	algortithms	and
how	to	design	symmetric	ciphers	or	authentication	algorithms.	It	covers	the	basic	understanding	of	the	core
cryptographic	concepts	and	how	to	use	them:	libraries,	tools,	code	examples.

...

The	book	author	Svetlin	Nakov	is	involved	with	applied	cryptography	from	2005,	when	he	published	the	book	"Java
for	Digitally	Signing	Documents	of	the	Web"	(in	Bulgarian),	following	his	master	thesis	on	a	similar	topic.

...

It	is	not	required	to	be	strong	mathematician	to	understand	the	cryptographic	concepts	from	developer	perspective.
This	book	will	teach	you	the	basic	concepts	is	almost	math-free	style.

Preface

8

http://cacr.uwaterloo.ca/hac/%29%29%29\
https://leanpub.com/crypto
https://www.amazon.com/Cryptography-Developers-Tom-St-Denis/dp/1597491047
https://www.cryptopp.com/wiki/Main_page%29%29%29\

Overview	of	Modern	Cryptography
Cryptography	has	evolved	from	its	first	attempts	(thousands	years	ago),	through	the	first	successful	cryptographic
algorithms	for	developers	(like	the	now	retired	MD5	and	DES)	to	modern	crypto	algorithms	(like	SHA-3,	Argon2	and
ChaCha20).

Let's	first	introduce	very	shortly	the	basic	cryptography	concepts,	that	developers	should	know,	like	cryptographic
hash	functions	(SHA-256,	SHA3,	RIPEMD	and	others),	HMAC	(hashed	message	authentication	code),	password	to
key	derivation	functions	(like	Scrypt),	the	Diffie-Hellman	key-exchange	protocol,	symmetric	key	encryption
schemes	(like	the	AES	cipher	with	CBC	and	CTR	block	modes)	and	asymmetric	key	encryption	schemes	with	public
and	private	keys	(like	the	RSA	cipher	and	elliptic	curves-based	cryptography	/	ECC,	the	secp256k1	curve	and	the
Ed25519	cryptosystem),	digital	signatures	and	ECDSA,	as	well	as	the	concept	of	entropy	and	secure	random
number	generation	and	quantum-safe	cryptography.

Encrypt	/	Decrypt	Message	-	Live	Demo
As	a	simple	example,	we	shall	demonstrate	message	encryption	+	decryption	using	the	AES	encryption	algorithm.
Play	with	this	online	tool:	https://aesencryption.net.

We	shall	learn	later	that	behind	this	simple	AES	encryption,	there	are	many	algorithms	and	settings	hidden	inside,
like	password	to	key-derivation	function	and	its	parameters,	block	cipher	mode,	cipher	initial	vector,	message
authentication	code	and	others.

Cryptography	-	Overview

9

https://aesencryption.net

What	is	Cryptography?
Cryptography	is	the	science	of	providing	security	and	protection	of	information.	It	is	used	everywhere	in	our	digital
world:	when	you	open	a	Web	site,	send	an	email	or	connect	to	the	WiFi	network.	What's	why	developers	should	have
at	least	basic	understanding	of	cryptography	and	how	to	use	crypto	algorithms	and	crypto	libraries,	to	understand
hashing,	symmetric	and	asymmetric	ciphers	and	encryption	schemes,	as	well	as	digital	signatures	and	the
cryptosystems	and	algorithms	behind	them.

Encryption	and	Keys
Cryptography	deals	with	storing	and	transmitting	data	in	a	secure	way,	such	that	only	those,	for	whom	it	is
intended,	can	read	and	process	it.	This	may	involve	encrypting	and	decrypting	data	using	symmetric	or	asymmetric
encryption	schemes	,	where	one	or	more	keys	are	used	to	transform	data	from	plain	to	encrypted	form	and	back.

Symmetric	encryption	(like	AES,	Twofish	and	ChaCha20)	uses	the	same	key	to	encrypt	and	decrypt	messages,
while	asymmetric	encryption	uses	a	public-key	cryptosystem	(like	RSA	or	ECC)	and	a	key-pair:	private	key
(encryption	key)	and	corresponding	public	key	(decryption	key).	Encryption	algorithms	are	often	combined	in
encryption	schemes	(like	AES-256-CTR-HMAC-SHA-256,	ChaCha20-Poly1305	or	ECIES-AES-128-GCM).

Cryptography	deals	with	keys	(large	secret	numbers)	and	in	many	scenarios	these	keys	are	derived	from	numbers,
passwords	or	passphrases	using	key	derivation	algorithms	(like	PBKDF2	and	Scrypt).

Digital	Signatures	and	Message	Authentication
Cryptography	provides	means	of	digital	signing	of	messages	which	guarantee	message	authenticity,	integrity	and
non-repudiation.	Most	digital	signature	algorithms	(like	DSA,	ECDSA	and	EdDSA)	use	asymmetric	key	pair	(private
and	public	key):	the	message	is	signed	by	the	private	key	and	the	signature	is	verified	by	the	corresponding	public
key.	In	the	bank	systems	digital	signatures	are	used	to	sign	and	approve	payments.	In	blockchain	signed
transactions	allow	users	to	transfer	a	blockchain	asset	from	one	address	to	another.

Cryptography	deals	with	message	authentication	algorithms	(like	HMAC)	and	message	authentication	codes	(MAC
codes)	to	prove	message	authenticity,	integrity	and	authorship.	Authentication	is	used	side	by	side	with	encryption,	to
ensure	secure	communication.

Secure	Random	Numbers
Cryptography	uses	random	numbers	and	deals	with	entropy	(unpredictable	randomness)	and	secure	generation	of
random	numbers	(e.g.	using	CSPRNG).	Secure	random	numbers	are	unpredictable	by	nature	and	developers
should	care	about	them,	because	broken	random	generator	means	compromised	or	hacked	system	or	app.

Key	Exchange
Cryptography	defines	key-exchange	algorithms	(like	Diffie-Hellman	key	exchange	and	ECDH)	and	key
establishment	schemes,	used	to	securely	establish	encryption	keys	between	two	parties	that	intend	to	transmit
messages	securely	using	encryption.	Such	algorithms	are	performed	typically	when	a	new	secure	connection
between	two	parties	is	established,	e.g.	when	you	open	a	modern	Web	site	or	connect	to	the	WiFi	network.

Cryptographic	Hashes	and	Password	Hashing
Cryptography	provides	cryptographic	hash	functions	(like	SHA-3	and	BLAKE2),	which	transform	messages	to
message	digest	(hash	of	fixed	length),	which	cannot	be	reversed	back	to	the	original	message	and	almost	uniquely
identifies	the	input.	In	blockchain	systems,	for	example,	hashes	are	used	to	generate	blockchain	addresses,
transaction	ID	and	in	many	other	algorithms	and	protocols.	In	Git	cryptographic	hashes	are	used	for	generating
unique	ID	for	files	and	commits.

Cryptography	-	Overview

10

Password	hashing	and	password	to	key	derivation	functions	(like	Scrypt	and	Argon2)	protect	user	passwords	and
password	encrypted	documents	and	data	by	securely	deriving	a	hash	(or	key)	from	a	text-based	passwords,	injecting
random	parameters	(salt)	and	using	a	lot	of	iterations	and	computing	resources	to	make	password	cracking	slow.

Confusion	and	Diffusion	in	Cryptography
In	cryptography	the	hashing,	encryption	algorithms	and	random	generators	follow	the	Shannon's	principles	of
confusion	and	diffusion.	Confusion	means	that	each	bit	in	the	output	form	a	cipher	should	depend	on	several	parts	of
the	key	and	input	data	and	thus	direct	mapping	cannot	be	established.	Diffusion	means	that	changing	one	bit	in	the
input	should	change	approximately	half	of	the	bits	in	the	output.	These	principles	are	incorporated	in	most	hash
functions,	MAC	algorithms,	random	number	generators,	symmetric	and	asymmetric	ciphers.

Cryptographic	Libraries
Developers	should	know	the	modern	cryptographic	libraries	for	their	programming	language	and	platform	and	how
to	use	them.	Developing	with	cryptography	requires	understanding	of	the	crypto-concepts.	Copy	/	pasting	code
from	Internet	or	following	an	example	from	a	blog	may	lead	to	insecure	design	and	weak	security.	Cryptographic
libraries	are	very	useful,	but	you	should	understand	the	concepts	first,	then	choose	appropriate	combination	of
algorithms	and	adjust	carefully	their	parameters.

Cryptography	-	Overview

11

https://en.wikipedia.org/wiki/Confusion_and_diffusion

Hashing	and	Cryptographic	Hash	Functions
In	computer	programming	hash	functions	map	text	(or	other	data)	to	integer	numbers.	Usually	different	inputs	maps
to	different	outputs,	but	sometimes	a	collision	may	happen	(different	input	with	the	same	output).

Hashing
The	process	of	calculating	the	value	of	certain	hash	function	is	called	"hashing".

In	the	above	example	the	text		John	Smith		is	hashed	to	the	hash	value		02		and		Lisa	Smith		is	hashed	to		01	.

The	input	texts		John	Smith		and		Sandra	Dee		both	are	hashed	to		02		and	this	is	called	"collision".

Hash	functions	are	irreversible	by	design,	which	means	that	there	is	no	fast	algorithm	to	restore	the	input	message
from	its	hash	value.

In	programming	hash	functions	are	used	in	the	implementation	of	the	data	structure	"hash-table"	(associative	array)
which	maps	values	of	certain	input	type	to	values	of	another	type,	e.g.	map	product	name	(text)	to	product	price
(decimal	number).

A	naive	hash	function	is	just	to	sum	the	bytes	of	the	input	data	/	text.	It	causes	a	lot	of	collisions,	e.g.		hello		and
	ehllo		will	have	the	same	hash	code.	Better	hash	functions	may	use	the	Merkle–Damgård	construction	scheme,
which	takes	the	first	byte	as	state,	then	transforms	the	state	(e.g.	multiplies	it	by	a	prime	number	like	31),	then	adds

Hash	Functions

12

https://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction

the	next	byte	to	the	state,	then	again	transforms	the	state	and	adds	the	next	byte,	etc.	This	significantly	reduces	the
rate	of	collisions	and	produces	better	distribution.

Cryptographic	Hash	Functions
In	cryptography,	hash	functions	transform	input	data	of	arbitrary	size	(e.g.	a	text	message)	to	a	result	of	fixed	size
(e.g.	256	bits),	which	is	called	hash	value	(or	hash	code,	message	digest,	or	simply	hash).	Hash	functions	(hashing
algorithms)	used	in	computer	cryptography	are	known	as	"cryptographic	hash	functions".	Examples	of	such
functions	are	SHA-256	and	SHA3-256,	which	transform	arbitrary	input	to	256-bit	output.

Cryptographic	Hash	Functions	-	Examples
As	an	example,	we	can	take	the	cryptographic	hash	function		SHA-256		and	calculate	the	hash	value	of	certain	text
message		hello	:

SHA-256("hello")	=
		"2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"

There	is	no	efficient	algorithm	to	find	the	input	message	(in	the	above	example		hello)	from	its	hash	value	(in	the

above	example		2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824).	It	is	well-known

that	cryptographic	hash	functions	cannot	be	reversed	back,	so	they	are	used	widely	to	encode	an	input	without
revealing	it	(e.g.	encode	a	private	key	to	a	blockchain	address	without	revealing	the	key).

As	another	example,	we	can	take	the	cryptographic	hash	function		SHA3-512		and	calculate	the	hash	value	of	the
same	text	message		hello	:

SHA3-512("hello")	=	"75d527c368f2efe848ecf6b073a36767800805e9eef2b1857d5f984f036eb6df891d75f
72d9b154518c1cd58835286d1da9a38deba3de98b5a53e5ed78a84976"

Cryptographic	Hash	Functions	-	Live	Demo
Play	with	most	popular	cryptographic	hash	functions	online:	https://www.fileformat.info/tool/hash.htm.

Hash	Functions

13

https://www.fileformat.info/tool/hash.htm

Cryptographic	hash	functions	are	widely	used	in	cryptography,	in	computer	programming	and	in	blockchain
systems.

Hash	Functions

14

Cryptographic	Hash	Functions	and	Collisions
Different	input	messages	are	expected	to	produce	different	output	hash	values	(message	digest).

Hash	Collisions
Collision	means	the	same	hash	value	for	two	different	inputs.	For	simple	hash	functions	are	easy	to	reach	a	collision.
For	example,	assume	a	hash	function		h(text)		sums	of	all	character	codes	in	a	text.	It	will	produce	the	same	hash

value	(collision)	for	texts	holding	the	same	letters	in	different	order,	i.e.		h('abc')	==	h('cab')	==	h('bca')	.	To

avoid	collisions,	cryptographers	have	designed	collision-resistant	hash	functions.

Cryptographic	Hash	Functions:	No	Collisions
Collisions	in	the	cryptographic	hash	functions	are	extremely	unlikely	to	happen,	so	crypto	hashes	are	considered	to
almost	uniquely	identify	their	corresponding	input.	Moreover,	it	is	extremely	hard	to	find	an	input	message	that	hashes
to	given	value.

Cryptographic	hash	functions	are	one-way	hash	functions,	which	are	infeasible	to	invert.	The	chance	to	find	a
collision	for	a	strong	cryptographic	hash	function	(like	SHA-256)	is	extremely	little.	Let's	define	this	in	more	details:

Let's	have	hash	value		h	=	hash(p)		for	certain	strong	cryptographic	hash	function		hash	.

It	is	expected	to	be	extremely	hard	to	find	an	input		p'	,	such	that		hash(p')	=	h	.
For	most	modern	strong	cryptographic	hash	functions	there	are	no	known	collisions.

The	ideal	cryptographic	hash	function	should	have	the	following	properties:

Crypto	Hashes	and	Collisions

15

Deterministic:	the	same	input	message	should	always	result	in	the	same	hash	value.
Quick:	it	should	be	fast	to	compute	the	hash	value	for	any	given	message.
Hard	to	analyze:	a	small	change	to	the	input	message	should	totally	change	the	output	hash	value.
Irreversible:	generating	a	valid	input	message	from	its	hash	value	should	be	infeasible.	This	means	that	there
should	be	no	significantly	better	way	than	brute	force	(try	all	possible	input	messages).
No	collisions:	it	should	be	extremely	hard	(or	practically	impossible)	to	find	two	different	messages	with	the
same	hash.

Modern	cryptographic	hash	functions	(like	SHA2	and	SHA3)	match	the	above	properties	and	are	used	widely	in
cryptography.

Crypto	Hashes	and	Collisions

16

Cryptographic	Hash	Functions:	Applications
Cryptographic	hash	functions	(like	SHA-256	and	SHA3-256)	are	used	in	many	scenarios.	Let's	review	their	most
common	applications.

Document	Integrity
Verifying	the	integrity	of	files	/	documents	/	messages.	E.g.	a	SHA256	checksum	may	confirm	that	certain	file	is
original	(not	modified	after	its	checksum	was	calculated).

The	above	screenshot	demonstrates	how	the	SHA256	checksums	ensure	the	integrity	of	the	OpenSSL	files	at	the
official	Web	site	of	OpenSSL.

Storing	Passwords
Storing	passwords	and	verification	of	passwords.	Instead	of	keeping	a	plain-text	password	in	the	database,
developers	usually	keep	password	hashes	or	more	complex	values	derived	from	the	password	(e.g.	Scrypt-derived
value).

The	above	example	comes	from	the		/etc/shadow		file	in	a	modern	Linux	system.	The	above	passwords	are	stored

as	multiple-round	SHA-512	hashes	with	salt.

Generate	Unique	ID
Generate	an	(almost)	unique	ID	of	certain	document	/	message.	Cryptographic	hash	functions	almost	uniquely
identify	documents	based	on	their	content.	In	theory	collisions	are	possible	with	any	cryptographic	hash	function,
but	are	very	unlikely	to	happen,	so	most	systems	(like	Git)	assume	that	the	hash	function	they	use	is	collistion	free.

Hash	Functions:	Applications

17

Usually	a	document	is	hashed	and	the	document	ID	(hash	value)	is	used	later	to	prove	the	existence	of	the
document,	or	to	retrieve	the	document	from	a	storage	system.	Example	of	hash-based	unique	IDs	are	the	commit
hashes	in	Git	and	GitHub,	based	on	the	content	of	the	commit	(e.g.
	3c3be25bc1757ca99aba55d4157596a8ea217698)	and	the	Bitcoin	addresses	(e.g.
	1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2).

In	the	above	example	the	SHA-1	unique	ID	identifies	a	certain	commit	in	GitHub.

Pseudorandom	Number	Generation
Pseudorandom	generation	and	key	derivation.	Hash	values	can	serve	as	random	numbers.	A	simple	way	to
generate	a	random	sequence	is	like	this:	start	from	a	random	seed	(entropy	collected	from	random	events,	such	like
keyboard	clicks	or	mouse	moves).	Append	"1"	and	calculate	the	hash	to	obtain	the	first	random	number,	then	append
"2"	and	calculate	the	hash	to	obtain	the	second	random	number,	etc.	We	shall	give	a	Python	example,	implementing
the	described	idea.

Proof-of-Work	Algorithms
Proof-of-work	(PoW)	algorithms.	Most	proof-of-work	algorithms	calculate	a	hash	value	which	is	bigger	than	certain
value	(known	as	mining	difficulty).	To	find	this	hash	value,	miners	calculate	billions	of	different	hashes	and	take	the
biggest	of	them,	because	hash	numbers	are	unpredictable.	For	example,	the	proof	of	work	problem	might	be	defined
as	follows:	find	a	number		p	,	such	that		hash(x	+	p)		holds	10	zero	bits	at	its	beginning.

Cryptographic	Hashes	are	Part	of	Modern	Programming
Cryptographic	hash	functions	are	so	widely	used,	that	they	are	often	implemented	as	build-in	functions	in	the
standard	libraries	for	the	modern	programming	languages	and	platforms.

Hash	Functions:	Applications

18

Secure	Hash	Algorithms
In	the	past,	many	cryptographic	hash	algorithms	were	proposed	and	used	by	software	developers.	Some	of	them
was	broken	(like	MD5	and	SHA1),	some	are	still	considered	secure	(like	SHA-2,	SHA-3	and	BLAKE2).	Let's	review
the	most	widely	used	cryptographic	hash	functions	(algorithms).

Secure	Hash	Functions
Modern	cryptographic	hash	algorithms	(like	SHA-3	and	BLAKE2)	are	considered	secure	enough	for	most
applications.

SHA-2,	SHA-256,	SHA-512
SHA-2	is	a	family	of	strong	cryptographic	hash	functions:	SHA-256	(256	bits	hash),	SHA-384	(384	bits	hash),	SHA-
512	(512	bits	hash),	etc.	It	is	based	on	the	cryptographic	concept	"Merkle–Damgård	construction"	and	is	considered
highly	secure.	SHA-2	is	published	as	official	crypto	standard	in	the	United	States.

SHA-2	is	widely	used	by	developers	and	in	cryptography	and	is	considered	cryptographically	strong	enough	for
modern	commercial	applications.

SHA-256	is	widely	used	in	the	Bitcoin	blockchain,	e.g.	for	identifying	the	transaction	hashes	and	for	the	proof-of-work
mining	performed	by	the	miners.

Examples	of	SHA2	hashes:

SHA-256('hello')	=	2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824
SHA-384('hello')	=	59e1748777448c69de6b800d7a33bbfb9ff1b463e44354c3553bcdb9c666fa90125a3c79f
90397bdf5f6a13de828684f
SHA-512('hello')	=	9b71d224bd62f3785d96d46ad3ea3d73319bfbc2890caadae2dff72519673ca72323c3d99
ba5c11d7c7acc6e14b8c5da0c4663475c2e5c3adef46f73bcdec043

More	Hash	Bits	==	Higher	Collision	Resistance
By	design,	more	bits	at	the	hash	output	are	expected	to	achieve	stronger	security	and	higher	collision	resistance
(with	some	exceptions).	As	general	rule,	128-bit	hash	functions	are	weaker	than	256-bit	hash	functions,	which	are
weaker	than	512-bit	hash	functions.

Thus,	SHA-512	is	stronger	than	SHA-256,	so	we	can	expect	that	for	SHA-512	it	is	more	unlikely	to	practically	find	a
collision	than	for	SHA-256.

SHA-3,	SHA3-256,	SHA3-512,	Keccak-256
SHA-3	(and	its	variants	SHA3-224,	SHA3-256,	SHA3-384,	SHA3-512),	is	considered	more	secure	than	SHA-2
(SHA-224,	SHA-256,	SHA-384,	SHA-512)	for	the	same	hash	length.	For	example,	SHA3-256	provides	more
cryptographic	strength	than	SHA-256	for	the	same	hash	length	(256	bits).

The	SHA-3	family	of	functions	are	representatives	of	the	"Keccak"	hashes	family,	which	are	based	on	the
cryptographic	concept	"sponge	construction".	Keccak	is	the	winner	of	the	SHA-3	NIST	competition.

Unlike	SHA-2,	the	SHA-3	family	of	cryptographic	hash	functions	are	not	vulnerable	to	the	"length	extension	attack".

SHA-3	is	considered	highly	secure	and	is	published	as	official	recommended	crypto	standard	in	the	United	States.

The	hash	function	Keccak-256,	which	is	used	in	the	Ethereum	blockchain,	is	a	variant	of	SHA3-256	with	some
constants	changed	in	the	code.

The	hash	functions	SHAKE128(msg,	length)	and	SHAKE256(msg,	length)	are	variants	of	the	SHA3-256	and
SHA3-512	algorithms,	where	the	output	message	length	can	vary.

Secure	Hash	Algorithms

19

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Merkle%E2%80%93Damg%C3%A5rd_construction
https://en.wikipedia.org/wiki/SHA-3
https://en.wikipedia.org/wiki/Sponge_function
https://en.wikipedia.org/wiki/NIST_hash_function_competition#Finalists
https://en.wikipedia.org/wiki/Length_extension_attack

Examples	of	SHA3	hashes:

SHA3-256('hello')	=	3338be694f50c5f338814986cdf0686453a888b84f424d792af4b9202398f392
Keccak-256('hello')	=	1c8aff950685c2ed4bc3174f3472287b56d9517b9c948127319a09a7a36deac8
SHA3-512('hello')	=	75d527c368f2efe848ecf6b073a36767800805e9eef2b1857d5f984f036eb6df891d75f7
2d9b154518c1cd58835286d1da9a38deba3de98b5a53e5ed78a84976
SHAKE-128('hello',	256)	=	4a361de3a0e980a55388df742e9b314bd69d918260d9247768d0221df5262380
SHAKE-256('hello',	160)	=	1234075ae4a1e77316cf2d8000974581a343b9eb

BLAKE2	/	BLAKE2s	/	BLAKE2b
BLAKE	/	BLAKE2	/	BLAKE2s	/	BLAKE2b	is	a	family	of	fast,	highly	secure	cryptographic	hash	functions,	providing
calculation	of	160-bit,	224-bit,	256-bit,	384-bit	and	512-bit	digest	sizes,	widely	used	in	modern	cryptography.	BLAKE	is
one	of	the	finalists	at	the	SHA-3	NIST	competition.

The	BLAKE2	function	is	an	improved	version	of	BLAKE.

BLAKE2s	(typically	256-bit)	is	BLAKE2	implementation,	performance-optimized	for	32-bit	microprocessors.

BLAKE2b	(typically	512-bit)	is	BLAKE2	implementation,	performance-optimized	for	64-bit	microprocessors.

The	BLAKE2	hash	function	has	similar	security	strength	like	SHA-3,	but	is	less	used	by	developers	than	SHA2	and
SHA3.

Examples	of	BLAKE	hashes:

BLAKE2s('hello')	=	19213bacc58dee6dbde3ceb9a47cbb330b3d86f8cca8997eb00be456f140ca25
BLAKE2b('hello')	=	e4cfa39a3d37be31c59609e807970799caa68a19bfaa15135f165085e01d41a65ba1e1b14
6aeb6bd0092b49eac214c103ccfa3a365954bbbe52f74a2b3620c94

RIPEMD-160
RIPEMD-160	is	a	secure	hash	function,	widely	used	in	cryptography,	e.g.	in	PGP	and	Bitcoin.

The	160-bit	variant	of	RIPEMD	is	widely	used	in	practice,	while	the	other	variations	like	RIPEMD-128,	RIPEMD-256
and	RIPEMD-320	are	not	popular	and	have	disputable	security	strengths.

As	recommendation,	prefer	using	SHA-2	and	SHA-3	instead	of	RIPEMD,	because	they	are	more	stronger	than
RIPEMD,	due	to	higher	bit	length	and	less	chance	for	collisions.

Examples	of	RIPEMD	hashes:

RIPEMD-160('hello')	=	108f07b8382412612c048d07d13f814118445acd
RIPEMD-320('hello')	=	eb0cf45114c56a8421fbcb33430fa22e0cd607560a88bbe14ce70bdf59bf55b11a3906
987c487992

All	of	the	above	popular	secure	hash	functions	(SHA-2,	SHA-3,	BLAKE2,	RIPEMD)	are	not	restricted	by	commercial
patents	and	are	free	for	public	use.

Insecure	Hash	Functions
Old	hash	algorithms	like	MD5,	SHA-0	and	SHA-1	are	considered	insecure	and	were	withdrawn	due	to
cryptographic	weaknesses	(collisions	found).	Don't	use	MD5,	SHA-0	and	SHA-1!	All	these	hash	functions	are
proven	to	be	cryptographically	insecure.

You	can	find	in	Internet	that	SHA1	collisions	can	be	practically	generated	and	this	results	in	algorithms	for	creating
fake	digital	signatures,	demonstrated	by	two	different	signed	PDF	documents	which	hold	different	content,	but	have
the	same	hash	value	and	the	same	digital	signature.	See	https://shattered.io.

Secure	Hash	Algorithms

20

https://en.wikipedia.org/wiki/BLAKE_\(hash_function\
https://en.wikipedia.org/wiki/NIST_hash_function_competition#Finalists
https://en.wikipedia.org/wiki/RIPEMD
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1#SHA-0
https://en.wikipedia.org/wiki/SHA-1
https://shattered.io

Avoid	using	of	the	following	hash	algorithms,	which	are	considered	insecure	or	have	disputable	security:	MD2,	MD4,
MD5,	SHA-0,	SHA-1,	Panama,	HAVAL	(disputable	security,	collisions	found	for	HAVAL-128),	Tiger	(disputable,
weaknesses	found),	SipHash	(it	is	not	a	cryptographic	hash	function).

Other	Secure	Hash	Functions
The	below	functions	are	popular	strong	cryptographic	hash	functions,	alternatives	to	SHA-2,	SHA-3	and	BLAKE2:

Whirpool	is	secure	cryptographic	hash	function,	which	produces	512-bit	hashes.

SM3	is	the	crypto	hash	function,	officialy	standartized	by	the	Chinese	government.	It	is	similar	to	SHA-256
(based	on	the	Merkle–Damgård	construction)	and	produces	256-bit	hashes.

GOST	is	secure	cryptographic	hash	function,	the	Russian	national	standard.	It	produces	256-bit	hashes.

The	below	functions	are	less	popular	alternatives	to	SHA-2,	SHA-3	and	BLAKE,	finalists	at	the	SHA-3	NIST
competition:

Skein	is	secure	cryptographic	hash	function,	capable	to	derive	128,	160,	224,	256,	384,	512	and	1024-bit
hashes.

Grøstl	is	secure	cryptographic	hash	function,	capable	to	derive	224,	256,	384	and	512-bit	hashes.

JH	is	secure	cryptographic	hash	function,	capable	to	derive	224,	256,	384	and	512-bit	hashes.

No	Collisions	for	SHA-256,	SHA3-256,	BLAKE2s	and	RIPEMD-160	are	Known
As	of	Oct	2018,	no	collisions	are	known	for:	SHA256,	SHA3-256,	Keccak-256,	BLAKE2s,	RIPEMD160	and	few
others.

Brute	forcing	to	find	hash	function	collision	as	general	costs:	2 	for	SHA256	/	SHA3-256	and	2 	for	RIPEMD160.

Respectively,	on	a	powerful	enough	quantum	computer,	it	will	cost	less	time:	2 	and	2 	respectively.	Still
(as	of	September	2018)	so	powerful	quantum	computers	are	not	known	to	exist.

Learn	more	about	cryptographic	hash	functions,	their	strength	and	attack	resistance	at:
https://z.cash/technology/history-of-hash-function-attacks.html

128 80

256/3 160/3

Secure	Hash	Algorithms

21

https://en.wikipedia.org/wiki/MD2_\(hash_function
https://en.wikipedia.org/wiki/MD4
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1#SHA-0
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Panama_\(cryptography
https://en.wikipedia.org/wiki/HAVAL
https://en.wikipedia.org/wiki/Tiger_\(hash_function
https://en.wikipedia.org/wiki/SipHash
https://en.wikipedia.org/wiki/Whirlpool_\(hash_function
https://tools.ietf.org/id/draft-oscca-cfrg-sm3-01.html
https://en.wikipedia.org/wiki/GOST_\(hash_function
https://en.wikipedia.org/wiki/NIST_hash_function_competition#Finalists
https://en.wikipedia.org/wiki/Skein_\(hash_function
https://en.wikipedia.org/wiki/Gr%C3%B8stl
https://en.wikipedia.org/wiki/JH_\(hash_function
https://z.cash/technology/history-of-hash-function-attacks.html

Hash	Functions	-	Examples	in	Python
In	this	section	we	shall	provide	a	few	examples	about	calculating	cryptographic	hash	functions	in	Python.

Calculating	Cryptographic	Hash	Functions	in	Python
We	shall	use	the	standard	Python	library		hashlib	.	The	input	data	for	hashing	should	be	given	as	bytes	sequence
(bytes	object),	so	we	need	to	encode	the	input	string	using	some	text	encoding,	e.g.		utf8	.	The	produced	output
data	is	also	a	bytes	sequence,	which	can	be	printed	as	hex	digits	using		binascii.hexlify()		as	shown	below:

import	hashlib,	binascii

text	=	'hello'
data	=	text.encode("utf8")

sha256hash	=	hashlib.sha256(data).digest()
print("SHA-256:			",	binascii.hexlify(sha256hash))

sha3_256	=	hashlib.sha3_256(data).digest()
print("SHA3-256:		",	binascii.hexlify(sha3_256))

blake2s	=	hashlib.new('blake2s',	data).digest()
print("BLAKE2s:			",	binascii.hexlify(blake2s))

ripemd160	=	hashlib.new('ripemd160',	data).digest()
print("RIPEMD-160:",	binascii.hexlify(ripemd160))

The	expected	output	from	the	above	example	looks	like	this:

SHA-256:				b'2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824'
SHA3-256:			b'3338be694f50c5f338814986cdf0686453a888b84f424d792af4b9202398f392'
BLAKE2s:				b'19213bacc58dee6dbde3ceb9a47cbb330b3d86f8cca8997eb00be456f140ca25'
RIPEMD-160:	b'108f07b8382412612c048d07d13f814118445acd'

Calculating		Keccak-256		hashes	(the	hash	function	used	in	the	Ethereum	blockchain)	requires	non-standard	Python

functions.	In	the	below	example	we	use	the		pycryptodome		package	available	from	PyPI:

https://pypi.org/project/pycryptodome.

First	install	"pycryptodome"	(https://www.pycryptodome.org)

pip	install	pycryptodome

Now	write	some	Python	code	to	calculate	a	Keccak-256	hash:

from	Crypto.Hash	import	keccak

keccak256	=	keccak.new(data=data,	digest_bits=256).digest()
print("Keccak256:	",	binascii.hexlify(keccak256))

The	output	from	the	above	examples	is:

Keccak256:		b'1c8aff950685c2ed4bc3174f3472287b56d9517b9c948127319a09a7a36deac8'

Hash	Functions	-	Examples

22

https://pypi.org/project/pycryptodome
https://www.pycryptodome.org

Hash	Functions	-	Examples

23

Exercises:	Calculate	Hashes
In	this	exercise	session,	you	are	assigned	to	write	some	code	to	calculate	cryptographic	hashes.	Write	a	program
to	calculate	hashes	of	given	text	message:	SHA-224,	SHA-256,	SHA3-224,	SHA3-384,	Keccak-384	and	Whirlpool.
Write	your	code	in	programming	language	of	choice.

Calculate	SHA-224	Hash
Input Output

hello ea09ae9cc6768c50fcee903ed054556e5bfc8347907f12598aa24193

Calculate	SHA-256	Hash
Input Output

hello 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

Calculate	SHA3-224	Hash
Input Output

hello b87f88c72702fff1748e58b87e9141a42c0dbedc29a78cb0d4a5cd81

Calculate	SHA3-384	Hash
Input Output

hello 720aea11019ef06440fbf05d87aa24680a2153df3907b23631e7177ce620fa1330ff07c0fddee54699a4c
3ee0ee9d887

Calculate	Keccak-384	Hash
Input Output

hello dcef6fb7908fd52ba26aaba75121526abbf1217f1c0a31024652d134d3e32fb4cd8e9c703b8f43e7277b5
9a5cd402175

Calculate	Whirlpool	(512	Bit)	Hash
Input Output

hello 0a25f55d7308eca6b9567a7ed3bd1b46327f0f1ffdc804dd8bb5af40e88d78b88df0d002a89e2fdbd5876
c523f1b67bc44e9f87047598e7548298ea1c81cfd73

Hints:	follow	the	Python	examples,	given	earlier	in	this	section	or	search	in	Internet.

Exercises:	Calculate	Hashes

24

Proof-of-Work	Hash	Functions:	ETHash	and	Equihash
Blockchain	proof-of-work	mining	algorithms	use	a	special	class	of	hash	functions	which	are	computational-
intensive	and	memory-intensive.	These	hash	functions	are	designed	to	consume	a	lot	of	computational	resources
and	a	lot	of	memory	and	to	be	very	hard	to	be	implemented	in	a	hardware	devices	(such	as	FPGA	integrated	circuits
or	ASIC	miners).	Such	hash	functions	are	known	as	"ASIC-resistant".

Many	hash	functions	are	designed	for	proof-of-work	mining	algorithms,	e.g.	ETHash,	Equihash,	CryptoNight	and
Cookoo	Cycle.	These	hash	functions	are	slow	to	calculate,	and	usually	use	GPU	hardware	(rigs	of	graphics	cards
like	NVIDIA	GTX	1080)	or	powerful	CPU	hardware	(like	Intel	Core	i7-8700K)	and	a	lot	of	fast	RAM	memory	(like
DDR4	chips).	The	goal	of	these	mining	algorithms	is	to	minimize	the	centralization	of	mining	by	stimulating	the
small	miners	(home	users	and	small	mining	farms)	and	limit	the	power	of	big	players	in	the	mining	industry	(who	can
afford	to	build	giant	mining	facilities	and	data	centers).	A	big	number	of	small	players	means	better	decentralization
than	a	small	number	of	big	players.

The	main	weapon	in	the	hands	of	the	big	mining	corporations	is	considered	the	ASIC	miners,	so	the	design	of	modern
cryptocurrencies	and	usually	includes	proof-of-work	mining	using	an	ASIC-resistant	hashing	algorithm	or	proof-of-
stake	consensus	protocol.

ETHash
Let's	explain	in	brief	the	idea	behind	the	ETHash	proof-of-work	mining	hash	function	used	in	the	Ethereum	blockchain.

ETHash	is	the	proof-of-work	hash	function	in	the	Ethereum	blockchain.	It	is	memory-intensive	hash-function
(requires	a	lot	of	RAM	to	be	calculated	fast),	so	it	is	believed	to	be	ASIC-resistant.

How	does	ETHash	work?

A	"seed"	is	computed	for	each	block	(based	on	the	entire	chain	until	the	current	block).
From	the	seed,	a	16	MB	pseudorandom	cache	is	computed.
From	the	cache,	a	1	GB	dataset	is	extracted	to	be	used	in	mining.
Mining	involves	hashing	together	random	slices	of	the	dataset.

Learn	more	about	ETHash	at:	https://github.com/ethereum/wiki/wiki/Ethash,	https://github.com/lukovkin/ethash.

Equihash
Let's	explain	in	briefly	the	idea	behind	the	Equihash	proof-of-work	mining	hash	function	used	in	Zcash,	Bitcoin	Gold
and	a	few	other	blockchains.

Equihash	is	the	proof-of-work	hash	function	in	the	Zcash	and	Bitcoin	Gold	blockchains.	It	is	memory-intensive
hash-function	(requires	a	lot	of	RAM	for	fast	calculation),	so	it	is	believed	to	be	ASIC-resistant.

How	does	Equihash	work?

Uses	BLAKE2b	to	compute	50	MB	hash	dataset	from	the	previous	blocks	in	the	blockchain	(until	the	current
block).
Solves	the	"Generalized	Birthday	Problem"	over	the	generated	hash	dataset	(pick	512	different	strings	from
2097152,	such	that	the	binary	XOR	of	them	is	zero).	The	best	known	solution	(Wagner's	algorithm)	runs	in
exponential	time,	so	it	requires	a	lot	of	memory-intensive	and	computing-intensive	calculations.
Double	SHA256	the	solution	to	compute	the	final	hash.

Learn	more	about	Equihash	at:	https://www.cryptolux.org/images/b/b9/Equihash.pdf,
https://github.com/tromp/equihash.

More	about	ASIC-Resistant	Hash	Functions

Proof-of-Work	Hash	Functions

25

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.bitcoin.it/wiki/Mining_rig
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/lukovkin/ethash
https://www.cryptolux.org/images/b/b9/Equihash.pdf
https://github.com/tromp/equihash

Lear	more	about	the	ASIC-resistant	hash	functions	at:	https://github.com/ifdefelse/ProgPOW.

Proof-of-Work	Hash	Functions

26

https://github.com/ifdefelse/ProgPOW

MAC	Codes	and	Key	Derivation	Functions
Message	authentication	codes	(MAC),	HMAC	(hash-based	message	authentication	code)	and	KDF	(key	derivation
functions)	play	important	role	in	cryptography.	Let's	explain	when	we	need	MAC,	how	to	calculate	HMAC	and	how	it	is
related	to	key	derivation	functions.

Message	Authentication	Code	(MAC)
Message	Authentication	Code	(MAC)	is	cryptographic	code,	calculated	by	given	key	and	given	message:

auth_code	=	MAC(key,	msg)

Typically,	it	behaves	like	a	hash	function:	a	minor	change	in	the	message	or	in	the	key	results	to	totally	different
MAC	value.	It	should	be	practically	infeasible	to	change	the	key	or	the	message	and	get	the	same	MAC	value.	MAC
codes,	like	hashes,	are	irreversible:	it	is	impossible	to	recover	the	original	message	or	the	key	from	the	MAC	code.

The	MAC	code	is	digital	authenticity	code,	like	a	digital	signature,	but	with	pre-shared	key.	We	shall	learn	more
about	digital	signing	and	digital	signatures	later.

MAC	Algorithms
Many	algorithms	for	calculating	message	authentication	codes	(MAC)	exist	in	modern	cryptography.	The	most
popular	are	based	on	hashing	algorithms,	like	HMAC	(Hash-based	MAC,	e.g.	HMAC-SHA256)	and	KMAC	(Keccak-
based	MAC).	Others	are	based	on	symmetric	ciphers,	like	CMAC	(Cipher-based	MAC),	GMAC	(Galois	MAC)	and
Poly1305	(Bernstein's	one-time	authenticator).	Other	MAC	algorithms	include	UMAC	(based	on	universal	hashing),
VMAC	(high-performance	block	cipher-based	MAC)	and	SipHash	(simple,	fast,	secure	MAC).

When	We	Need	MAC	Codes?
A	sample	scenario	for	using	MAC	codes	is	like	this:

Two	parties	exchange	somehow	a	certain	secret	MAC	key	(pre-shared	key).
We	receive	a	msg	+	auth_code	from	somewhere	(e.g.	from	Internet,	from	the	blockchain,	or	from	email
message).
We	want	to	be	sure	that	the	msg	is	not	tampered,	which	means	that	both	the	key	and	msg	are	correct	and
match	the	MAC	code.
In	case	of	tampered	message,	the	MAC	code	will	be	incorrect.

MAC	and	Key	Derivation

27

https://en.wikipedia.org/wiki/HMAC
https://www.cryptosys.net/manapi/api_kmac.html
https://en.wikipedia.org/wiki/One-key_MAC
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Poly1305
https://en.wikipedia.org/wiki/UMAC
https://en.wikipedia.org/wiki/VMAC
https://en.wikipedia.org/wiki/SipHash

Authenticated	Encryption:	Encrypt	/	Decrypt	Messages
using	MAC
Another	scenario	to	use	MAC	codes	is	for	authenticated	encryption:	when	we	encrypt	a	message	and	we	want	to
be	sure	the	decryption	password	is	correct	and	the	decrypted	message	is	the	same	like	the	original	message
before	encryption.

First,	we	derive	a	key	from	the	password.	We	can	use	this	key	for	the	MAC	calculation	algorithm	(directly	or
hashed	for	better	security).
Next,	we	encrypt	the	message	using	the	derived	key	and	store	the	ciphertext	in	the	output.
Finally,	we	calculate	the	MAC	code	using	the	derived	key	and	the	original	message	and	we	append	it	to	the
output.

When	we	decrypt	the	encrypted	message	(ciphertext	+	MAC),	we	proceed	as	follows:

First,	we	derive	a	key	from	the	password,	entered	by	the	user.	It	might	be	the	correct	password	or	wrong.	We
shall	find	out	later.
Next,	we	decrypt	the	message	using	the	derived	key.	It	might	be	the	original	message	or	incorrect	message
(depends	on	the	password	entered).
Finally,	we	calculate	a	MAC	code	using	the	derived	key	+	the	decrypted	message.

If	the	calculated	MAC	code	matches	the	MAC	code	in	the	encrypted	message,	the	password	is	correct.
Otherwise,	it	will	be	proven	that	the	decrypted	message	is	not	the	original	message	and	this	means	that	the
password	is	incorrect

Some	authenticated	encryption	algorithms	(such	as	AES-GCM	and	ChaCha20-Poly1305)	integrate	the	MAC
calculation	into	the	encryption	algorithm	and	the	MAC	verification	into	the	decryption	algorithm.	We	shall	learn	more
about	these	algorithms	later.

The	MAC	is	stored	along	with	the	ciphertext	and	it	does	not	reveal	the	password	or	the	original	message.	Storing	the
MAC	code,	visible	to	anyone	is	safe,	and	after	decryption,	we	know	whether	the	message	is	the	original	one	or	not
(wrong	password).

MAC-Based	Pseudo-Random	Generator

MAC	and	Key	Derivation

28

https://en.wikipedia.org/wiki/Authenticated_encryption

Another	application	of	MAC	codes	is	for	pseudo-random	generator	functions.	We	can	start	from	certain	salt
(constant	number	or	the	current	date	and	time	or	some	other	randomness)	and	some	seed	number	(last	random
number	generated,	e.g.	0).	We	can	calculate	the	next_seed	as	follows:

next_seed	=	MAC(salt,	seed)

This	next	pseudo-random	number	is	"randomly	changes"	after	each	calculation	of	the	above	formula	and	we	can
use	it	to	generate	the	next	random	number	in	certain	range.

MAC	and	Key	Derivation

29

HMAC	and	Key	Derivation	Functions	(KDF)
Simply	calculating		hash_func(key	+	msg)		to	obtain	a	MAC	(message	authentication	code)	is	considered	insecure
(see	the	details).	It	is	recommended	to	use	the	HMAC	algorithm	instead,	e.g.		HMAC-SHA256		or		HMAC-SHA3-512		or
other	secure	MAC	algorithm.

What	is	HMAC?
HMAC	=	Hash-based	Message	Authentication	Code	(MAC	code,	calculated	using	a	cryptographic	hash	function):

HMAC(key,	msg,	hash_func)	->	hash

The	results	MAC	code	is	a	message	hash	mixed	with	a	secret	key.	It	has	the	cryptographic	properties	of	hashes:
irreversible,	collision	resistant,	etc.

The		hash_func		can	be	any	cryptographic	hash	function	like		SHA-256	,		SHA-512	,		RIPEMD-160	,		SHA3-256		or

	BLAKE2s	.

HMAC	is	used	for	message	authenticity,	message	integrity	and	sometimes	for	key	derivation.

Key	Derivation	Functions	(KDF)
Key	derivation	function	(KDF)	is	a	function	which	transforms	a	variable-length	password	to	fixed-length	key
(sequence	of	bits):

function(password)	->	key

As	very	simple	KDF	function,	we	can	use	SHA256:	just	hash	the	password.	Don't	do	this,	because	it	is	insecure.
Simple	hashes	are	vulnerable	to	dictionary	attacks.

As	more	complicated	KDF	function,	you	can	derive	a	password	by	calculating	HMAC(salt,	msg,	SHA256)	using	some
random	value	called	"salt",	which	is	stored	along	with	the	derived	key	and	used	later	to	derive	the	same	key	again
from	the	password.

Using	HKDF	(HMAC-based	key	derivation)	for	key	derivation	is	less	secure	than	modern	KDFs,	so	experts
recommend	using	stronger	key	derivation	functions	like	PBKDF2,	Bcrypt,	Scrypt	and	Argon2.	We	shall	discuss	all
these	KDF	functions	later.

HMAC	Calculation	-	Example
To	get	a	better	idea	of	HMAC	and	how	it	is	calculated,	try	this	online	tool:	https://www.freeformatter.com/hmac-
generator.html

HMAC	and	Key	Derivation

30

https://en.wikipedia.org/wiki/HMAC#Design_principles
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Argon2
https://www.freeformatter.com/hmac-generator.html

Play	with	calculating	HMAC('sample	message',	'12345',	'SHA256'):

HMAC('sample	message',	'12345',	'SHA256')	=
		'ee40ca7bc90df844d2f5b5667b27361a2350fad99352d8a6ce061c69e41e5d32'

Try	the	above	example	yourself.

HMAC	and	Key	Derivation

31

HMAC	Calculation	-	Examples	in	Python
In	Python	we	can	calculate	HMAC	codes	as	follows	(using	the		hashlib		and		hmac		libraries):

import	hashlib,	hmac,	binascii

def	hmac_sha256(key,	msg):
		return	hmac.new(key,	msg,	hashlib.sha256).digest()

key	=	b"12345"
msg	=	b"sample	message"
print(binascii.hexlify(hmac_sha256(key,	msg)))

The	above	code	will	calculate	and	print	the	expected	HMAC	code	(like	in	our	previous	example):

ee40ca7bc90df844d2f5b5667b27361a2350fad99352d8a6ce061c69e41e5d32

Try	the	code	yourself	and	play	with	it.

HMAC	Calculation	-	Examples

32

Exercises:	Calculate	HMAC
Write	a	program	to	calculate	HMAC-SHA-384	of	given	text	message	by	given	key.	Write	your	code	in	programming
language	of	choice.

Input Output

Message:	he
llo
Key:	cryptogr
aphy

83d1c3d3774d8a32b8ea0460330c16d1b2e3e5c0ea86ccc2d70e603aa8c8151d675dfe339d8
3f3f495fab226795789d4

Message:	he
llo
Key:	again

4c549a549aa037e0fb651569bf271faa23cfa20e8a9d21438a6ff5bf6be916bebdbaa48001e0cd
6941ec74cd02be70e5

Hints:	follow	the	Python	examples,	given	earlier	in	this	section	or	search	in	Internet.

Exercises:	Calculate	HMAC

33

Key	Derivation	Functions	(KDF):	Deriving	a	Key	from
Password
Now	let's	explain	in	details	how	to	securely	derive	a	key	from	a	password	and	the	most	popular	key	derivation
functions	(KDFs)	used	in	practice:	PBKDF2,	Bcrypt,	Scrypt	and	Argon2.

[TODO:	explain	the	Linux	crypt:	SHA-512	key	derivation]	
We	shall	discuss	the	strong	and	weak	sides	of	the	above	mentioned	KDFs	and	when	to	use	them.

Key	Derivation	Functions	-	Concepts
In	cryptography	we	often	use	passwords	instead	of	binary	keys,	because	passwords	are	easier	to	remember,	to
write	down	and	can	be	shorter.

When	a	certain	algorithm	needs	a	key	(e.g.	for	encryption	or	for	digital	signing)	a	key	derivation	function	(password
->	key)	is	needed.

We	already	noted	that	using		SHA-256(password)		as	key-derivation	is	insecure!	It	is	vulnerable	to	many	attacks:

brute-forcing,	dictionary	attacks,	rainbow	attacks	and	others,	which	may	reverse	the	hash	in	practice	and	attacker
can	obtain	the	password.

Cryptographic	Key	Derivation	Functions
PBKDF2,	Bcrypt,	Scrypt	and	Argon2	are	significantly	stronger	key	derivation	functions	and	are	designed	to	survive
password	guessing	(brute	force)	attacks.

By	design	secure	key	derivation	functions	use	salt	(random	number,	which	is	different	for	each	key	derivation)	+
many	iterations	(to	speed-down	eventual	password	guessing	process).	This	is	a	process,	known	as	key	stretching.

To	calculate	a	secure	KDF	it	takes	some	CPU	time	to	derive	the	key	(e.g.	0.2	sec)	+	some	memory	(RAM).	Thus
deriving	the	key	is	"computationally	expensive",	so	password	cracking	will	also	be	computationally	expensive.

When	a	modern	KDF	function	is	used	with	appropriate	config	parameters,	cracking	passwords	will	be	slow	(e.g.	5-
10	attempts	per	second,	instead	of	thousands	or	millions	attempts	per	second).

All	of	the	above	mentioned	key-derivation	algorithms	(PBKDF2,	Bcrypt,	Scrypt	and	Argon2)	are	not	patented	and
royalty-free	for	public	use.

Let's	learn	more	about	these	modern	KDF.

KDF:	Deriving	Key	from	Password

34

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Argon2
https://en.wikipedia.org/wiki/Key_stretching
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Argon2

PBKDF2:	Derive	Key	from	Password
PBKDF2	is	a	simple	cryptographic	key	derivation	function,	which	is	resistant	to	dictionary	attacks	and	rainbow	table
attacks.	It	is	based	on	iteratively	deriving	HMAC	many	times	with	some	padding.	The	PBKDF2	algorithm	is	described
in	the	Internet	standard	RFC	2898	(PKCS	#5).

PBKDF2	takes	several	input	parameters	and	produces	the	derived	key	as	output:

key	=	pbkdf2(password,	salt,	iterations-count,	hash-function,	derived-key-len)

Technically,	the	input	data	for	PBKDF2	consists	of:

	password		–	array	of	bytes	/	string,	e.g.	"p@$Sw0rD~3"	(8-10	chars	minimal	length	is	recommended)

	salt		–	securely-generated	random	bytes,	e.g.	"df1f2d3f4d77ac66e9c5a6c3d8f921b6"	(minimum	64	bits,	128

bits	is	recommended)
	iterations-count	,	e.g.	1024	iterations

	hash-function		for	calculating	HMAC,	e.g.		SHA256	
	derived-key-len		for	the	output,	e.g.	32	bytes	(256	bits)

The	output	data	is	the	derived	key	of	requested	length	(e.g.	256	bits).

PBKDF2	and	Number	of	Iterations
PBKDF2	allows	to	configure	the	number	of	iterations	and	thus	to	configure	the	time	required	to	derive	the	key.

Slower	key	derivation	means	high	login	time	/	slower	decryption	/	etc.	and	higher	resistance	to	password
cracking	attacks.
Faster	key	derivation	means	short	login	time	/	faster	decryption	/	etc.	and	lower	resistance	to	password
cracking	attacks.
PBKDF2	is	not	resistant	to	GPU	attacks	(parallel	password	cracking	using	video	cards)	and	to	ASIC	attacks
(specialized	password	cracking	hardware).	This	is	the	main	motivation	behind	more	modern	KDF	functions.

PBKDF2	-	Example
Try	PBKDF2	key	derivation	online	here:	https://asecuritysite.com/encryption/PBKDF2z.

PBKDF2

35

https://en.wikipedia.org/wiki/Dictionary_attack
https://en.wikipedia.org/wiki/Rainbow_table
http://ietf.org/rfc/rfc2898.txt
https://security.stackexchange.com/questions/118147/how-are-gpus-used-in-brute-force-attacks
https://en.wikipedia.org/wiki/Custom_hardware_attack
https://asecuritysite.com/encryption/PBKDF2z

Try	to	increase	the	iterations	count	to	see	how	this	affects	the	speed	of	key	derivation.

PBKDF2	Calculation	in	Python	-	Example
Now,	we	shall	write	some	code	in	Python	to	derive	a	key	from	a	password	using	the	PBKDF2	algorithm.

First,	install	the	Python	package		backports.pbkdf2		using	the	command:

pip	install	backports.pbkdf2

Now,	write	the	Python	code	to	calculate	PBKDF2:

import	os,	binascii
from	backports.pbkdf2	import	pbkdf2_hmac

salt	=	binascii.unhexlify('aaef2d3f4d77ac66e9c5a6c3d8f921d1')
passwd	=	"p@$Sw0rD~1".encode("utf8")
key	=	pbkdf2_hmac("sha256",	passwd,	salt,	50000,	32)
print("Derived	key:",	binascii.hexlify(key))

The	PBKDF2	calculation	function	takes	several	input	parameters:	hash	function	for	the	HMAC,	the	password
(bytes	sequence),	the	salt	(bytes	sequence),	iterations	count	and	the	output	key	length	(number	of	bytes	for	the
derived	key).

The	output	from	the	above	code	execution	is	the	following:

Derived	key:	b'52c5efa16e7022859051b1dec28bc65d9696a3005d0f97e506c42843bc3bdbc0'

Try	to	change	the	number	of	iterations	and	see	whether	and	how	the	execution	time	changes.

When	to	Use	PBKDF2?

PBKDF2

36

Today	PBKDF2	is	considered	old-fashioned	and	less	secure	than	modern	KDF	functions,	so	it	is	recommended	to
use	Bcrypt,	Scrypt	or	Argon2	instead.	We	shall	explain	all	these	KDF	functions	in	details	later	in	this	section.

PBKDF2

37

Modern	KDFs:	Bcrypt,	Scrypt	and	Argon2
PBKDF2	has	a	major	weakness:	it	is	not	GPU-resistant	and	not	ASIC-resistant,	because	it	uses	relatively	small
amount	of	RAM	and	can	be	efficiently	implemented	on	GPU	(graphics	cards)	or	ASIC	(specialized	hardware).

Modern	key-derivation	functions	(KDF)	like	Scrypt	and	Argon2	are	designed	to	be	resistant	to	dictionary	attacks,
GPU	attacks	and	ASIC	attacks.	These	functions	derive	a	key	(of	fixed	length)	from	a	password	(text)	and	need	a	lot
memory	(RAM),	which	does	not	allow	fast	parallel	computations	on	GPU	or	ASIC	hardware.

Algorithms	like	Bcrypt,	Scrypt	and	Argon2	are	considered	more	secure	KDF	functions.	They	use	salt	+	many
iterations	+	a	lot	of	CPU	+	a	lot	of	RAM	memory	and	this	makes	very	hard	to	design	a	custom	hardware	to
significantly	speed	up	password	cracking.

It	takes	a	lot	of	CPU	time	to	derive	the	key	(e.g.	0.2	sec)	+	a	lot	of	RAM	memory	(e.g.	1GB).	The	calculation	process
is	memory-dependent,	so	the	memory	access	is	the	bottleneck	of	the	calculations.	Faster	RAM	access	will	speed-
up	the	calculations.

When	a	lot	of	CPU	and	RAM	is	used	to	derive	the	key	from	given	password,	cracking	passwords	is	slow	and
inefficient	(e.g.	5-10	attempts	/	second),	even	when	using	very	good	password	cracking	hardware	and	software.	The
goal	of	the	modern	KDF	functions	is	to	make	practically	infeasible	to	perform	a	brute-force	attack	to	reverse	the
password	from	its	hash.

Let's	discuss	in	more	details	Scrypt,	Bcrypt	and	Argon2.

Modern	Key	Derivation	Functions

38

https://en.wikipedia.org/wiki/Scrypt
https://en.wikipedia.org/wiki/Argon2

Scrypt	Key	Derivation
Scrypt	(RFC	7914)	is	a	strong	cryptographic	key-derivation	function	(KDF).	It	is	memory-intensive,	designed	to
prevent	GPU,	ASIC	and	FPGA	attacks	(highly	efficient	password	cracking	hardware).

The	Scrypt	algorithm	takes	several	input	parameters	and	produces	the	derived	key	as	output:

key	=	Scrypt(password,	salt,	N,	r,	p,	derived-key-len)

Scrypt	Parameters
The	Scrypt	config	parameters	are:

	N		–	iterations	count	(affects	memory	and	CPU	usage),	e.g.	16384

	r		–	block	size	(affects	memory	and	CPU	usage),	e.g.	8

	p		–	parallelism	factor	(threads	to	run	in	parallel	-	affects	the	memory,	CPU	usage),	usually	1

	password	–	the	input	password	(8-10	chars	minimal	length	is	recommended)

	salt		–	securely-generated	random	bytes	(64	bits	minimum,	128	bits	recommended)

	derived-key-length		-	how	many	bytes	to	generate	as	output,	e.g.	32	bytes	(256	bits)

The	memory	in	Scrypt	is	accessed	in	strongly	dependent	order	at	each	step,	so	the	memory	access	speed	is	the
algorithm's	bottleneck.	The	memory	required	to	compute	Scrypt	key	derivation	is	calculated	as	follows:

Memory	required	=	128	*	N	*	r	*	p	bytes

Example:	e.g.	128	*	N	*	r	*	p	=	128	*	16384	*	8	*	1	=	16	MB

Choosing	parameters	depends	on	how	much	you	want	to	wait	and	what	level	of	security	(password	cracking
resistance)	do	you	want	to	achieve:

Sample	parameters	for	interactive	login:	N=16384,	r=8,	p=1	(RAM	=	16MB).	For	interactive	login	you	most
probably	do	not	want	to	wait	more	than	a	0.5	seconds,	so	the	computations	should	be	very	slow.	Also	at	the
server	side,	it	is	usual	that	many	users	can	login	in	the	same	time,	so	slow	Scrypt	computation	will	slow	down	the
entire	system.
Sample	parameters	for	file	encryption:	N=1048576,	r=8,	p=1	(RAM	=	1GB).	When	you	encrypt	your	hard	drive,
you	will	unlock	the	encrypted	data	in	rare	cases,	usually	not	more	than	2-3	times	per	day,	so	you	may	want	to
wait	for	2-3	seconds	to	increase	the	security.

You	can	perform	tests	and	choose	the	Scrypt	parameters	yourself	during	the	design	and	development	of	your	app	or
system.	Always	try	to	use	the	fastest	possible	implementation	of	Scrypt	for	your	language	and	platform,	because
crackers	will	definitely	use	it.	Some	implementations	(e.g.	in	Python)	may	be	100	times	slower	than	the	fastest	ones!

In	the	MyEtherWallet	crypto	wallet,	the	default	Scrypt	parameters	are	N=8192,	r=8,	p=1.	These	settings	are	not
strong	enough	for	crypto	wallets,	but	this	is	how	it	works.	The	solution	is	to	use	long	and	complex	password	to	avoid
password	cracking	attacks.

Scrypt	-	Example
You	can	play	with	Scrypt	key	derivation	online	here:	https://8gwifi.org/scrypt.jsp.

Scrypt

39

https://en.wikipedia.org/wiki/Scrypt
https://tools.ietf.org/html/rfc7914.html
https://8gwifi.org/scrypt.jsp

Scrypt	Calculation	in	Python	-	Example
Now,	we	shall	write	some	code	in	Python	to	derive	a	key	from	a	password	using	the	Scrypt	algorithm.

First,	install	the	Python	package		scrypt		using	the	command:

pip	install	scrypt

Now,	write	the	Python	code	to	calculate	Scrypt:

import	scrypt,	binascii

salt	=	binascii.unhexlify('aa1f2d3f4d23ac44e9c5a6c3d8f9ee8c')
passwd	=	"p@$Sw0rD~7".encode("utf8")
key	=	scrypt.hash(passwd,	salt,	16384,	8,	1,	32)
print("Derived	key:",	binascii.hexlify(key))

The	Scrypt	calculation	function	takes	several	input	parameters:	the	password	(bytes	sequence),	the	salt	(bytes
sequence),	iterations	count,	block	size	for	each	iteration,	parallelism	factor	and	the	output	key	length	(number	of
bytes	for	the	derived	key).

The	output	from	the	above	code	execution	is	the	following:

Derived	key:	b'1660a97efe9ea0ee1cc843e99cc00c1643925ea5b8096371950ec5c2f4c3fe48'

Try	to	change	the	number	of	iterations	or	the	block	size	and	see	how	they	affect	the	execution	time.	Have	in	mind
that	the	above	Python	implementation	is	not	very	fast.	You	may	find	fast	Scrypt	implementation	in	Internet.

Storing	Algorithm	Settings	+	Salt	+	Hash	Together

Scrypt

40

In	many	applications,	frameworks	and	tools,	Scrypt	encrypted	passwords	are	stored	together	with	the	algorithm
settings	and	salt,	into	a	single	string	(in	certain	format),	consisting	of	several	parts,	separated	by		$		character.	For
example,	the	password		p@ss~123		can	be	stored	in	the	Scrypt	standard	format	like	this	(several	examples	are	given,

to	make	the	pattern	apparent):

16384$8$1$kytG1MHY1KU=$afc338d494dc89be40e317788e3cd9166d066709db0e6481f0801bd918710f46
16384$8$1$5gFGlElztY0=$560f6229356c281a525fad4e2fc4c209bb55c21dec789381335a32bb84888a5a
32768$8$4$VGhlIHF1aWo=$54d657cec8b3aaca675b407e790bccf1dddb0a23665cd5f994820a736d4b58ba

When	to	Use	Scrypt?
When	configured	properly	Scrypt	is	considered	a	highly	secure	KDF	function,	so	you	can	use	it	as	general	purpose
password	to	key	derivation	algorithm,	e.g.	when	encrypting	wallets,	files	or	app	passwords.

Scrypt

41

Bcrypt	Key	Derivation
Bcrypt	is	another	cryptographic	KDF	function,	older	than	Scrypt,	and	is	less	resistant	to	ASIC	and	GPU	attacks.	It
provides	configurable	iterations	count,	but	uses	constant	memory,	so	it	is	easier	to	build	hardware-accelerated
password	crackers.

Bcrypt	-	Example
You	can	play	with	Bcrypt	here:	https://www.dailycred.com/article/bcrypt-calculator.

Storing	Algorithm	Settings	+	Salt	+	Hash	Together
In	many	applications,	frameworks	and	tools	(e.g.	in	the	database	of	WordPress	sites),	Bcrypt	encrypted	passwords
are	stored	together	with	the	algorithm	settings	and	salt,	into	a	single	string	(in	certain	format),	consisting	of
several	parts,	separated	by		$		character.	For	example,	the	password		p@ss~123		can	be	stored	in	the	Bcrypt

encrypted	format	like	this	(several	examples	are	given,	to	make	the	pattern	apparent):

$2a$07$wHirdrK4OLB0vk9r3fiseeYjQaCZ0bIeKY9qLsNep/I2nZAXbOb7m
$2a$12$UqBxs0PN/u106Fio1.FnDOhSRJztLz364AwpGemp1jt8OnJYNsr.e
$2a$12$8Ov4lfmZZbv8O5YKrXXCu.mdH9Dq9r72C5GnhVZbGNsIzTr8dSUfm

When	to	Use	Bcrypt?
When	configured	properly	Bcrypt	is	considered	a	secure	KDF	function	and	is	widely	used	in	practice.	It	is
considered	that	Scrypt	is	more	secure	than	Bcrypt,	so	modern	applications	should	prefer	Scrypt	(or	Argon2)
instead	of	Bcrypt.	Still,	this	recommendation	is	disputable,	but	I	personally	prefer	Argon2.

Bcrypt

42

https://en.wikipedia.org/wiki/Bcrypt
https://www.dailycred.com/article/bcrypt-calculator

The	Linux	crypt()	KDF	Function	from	glibc
...	...

[TODO:	write	a	few	words	about	the	crypt()	function	in	Linux]

See	https://en.wikipedia.org/wiki/Crypt_(C)

...	...

Linux	crypt()

43

https://en.wikipedia.org/wiki/Crypt_(C

Argon2:	Secure,	ASIC-Resistant	KDF
Argon2	is	modern	ASIC-resistant	and	GPU-resistant	secure	key	derivation	function.	It	has	better	password	cracking
resistance	(when	configured	correctly)	than	PBKDF2,	Bcrypt	and	Scrypt	(for	similar	configuration	parameters	for
CPU	and	RAM	usage).

Variants	of	Argon2
The	Argon2	function	has	several	variants:

Argon2d	–	provides	strong	GPU	resistance,	but	has	potential	side-channel	attacks	(possible	in	very	special
situations).
Argon2i	–	provides	less	GPU	resistance,	but	has	no	side-channel	attacks.
Argon2id	–	recommended	(combines	the	Argon2d	and	Argon2i).

Config	Parameters	of	Argon2
Argon2	has	the	following	config	parameters,	which	are	very	similar	to	Scrypt:

password		P	:	the	password	(or	message)	to	be	hashed
salt		S	:	random-generated	salt	(16	bytes	recommended	for	password	hashing)
iterations		t	:	number	of	iterations	to	perform
memorySizeKB		m	:	amount	of	memory	(in	kilobytes)	to	use
parallelism		p	:	degree	of	parallelism	(i.e.	number	of	threads)

outputKeyLength		T	:	desired	number	of	returned	bytes

Argon2	-	Example
You	can	play	with	the	Argon2	password	to	key	derivation	function	online	here:	http://antelle.net/argon2-browser.

Argon2

44

https://en.wikipedia.org/wiki/Argon2
http://antelle.net/argon2-browser

Argon2	Calculation	in	Python	-	Example
Now,	we	shall	write	some	code	in	Python	to	derive	a	key	from	a	password	using	the	Argon2	algorithm.

First,	install	the	Python	package		argon2_cffi		using	the	command:

pip	install	argon2_cffi

Now,	write	the	Python	code	to	calculate	Argon2:

import	argon2

argon2Hasher	=	argon2.PasswordHasher(time_cost=50,	memory_cost=102400,	parallelism=8,	hash_l
en=32,	salt_len=16)
hash	=	argon2Hasher.hash("s3kr3tp4ssw0rd")
print("Derived	key:",	hash)

The	Argon2	calculation	takes	several	input	configuration	settings:	time_cost	(number	of	iterations),	memory_cost
(memory	to	use	in	KB),	parallelism	(how	many	parallel	threads	to	use),	hash_len	(the	size	of	the	derived	key),
salt_len	(the	size	of	the	random	generated	salt,	typically	128	bits	/	16	bytes).

Sample	output	from	the	above	code	execution:

Derived	key:	$argon2id$v=19$m=102400,t=50,p=8$JPoIjwAPeCGiLFwdhcCMwQ$Mf9d8TtMA7b21/8VTyW+zEY
lzMo2TyPclkf4qnNUzCI

Argon2

45

Note	that	the	above	output	is	not	the	derived	key,	but	a	hash	string	in	a	standardized	format,	which	holds	the	Argon2
algorithm	config	parameters	+	the	derived	key	+	the	random	salt.	By	design,	the	salt	and	the	derived	key	should	be
different	at	each	code	execution.

Try	to	change	the	time_cost	or	the	memory_cost	settings	and	see	how	they	affect	the	execution	time	for	the	key
derivation.

Storing	Algorithm	Settings	+	Salt	+	Hash	Together
In	many	applications,	frameworks	and	tools,	Argon2	encrypted	passwords	are	stored	together	with	the	algorithm
settings	and	salt,	into	a	single	string	(in	certain	format),	consisting	of	several	parts,	separated	by		$		character.	For
example,	the	password		p@ss~123		can	be	stored	in	the	Argon2	standard	format	like	this	(several	examples	are	given,

to	make	the	pattern	apparent):

$argon2d$v=19$m=1024,t=16,p=4$c2FsdDEyM3NhbHQxMjM$2dVtFVPCezhvjtyu2PaeXOeBR+RUZ6SqhtD/+QF4F1
o
$argon2d$v=19$m=1024,t=16,p=4$YW5vdGhlcnNhbHRhbm90aGVyc2FsdA$KB7Nj7kK21YdGeEBQy7R3vKkYCz1cdR
/I3QcArMhl/Q
$argon2i$v=19$m=8192,t=32,p=1$c21hbGxzYWx0$lmO1aPPy3x0CcvrKpFLi1TL/uSVJ/eO5hPHiWZFaWvY

When	to	Use	Argon2?
When	configured	properly	Argon2	is	considered	a	highly	secure	KDF	function,	one	of	the	best	available	in	the
industry,	so	you	can	use	it	as	general	purpose	password	to	key	derivation	algorithm,	e.g.	to	when	encrypting	wallets,
documents,	files	or	app	passwords.	In	the	general	case	Argon2	is	recommended	over	Scrypt,	Bcrypt	and
PBKDF2.

Argon2

46

Password	Encryption:	Encrypting	User	Passwords
In	software	development	we	constantly	use	password-based	user	authentication.	For	example,	if	we	have	a	Web
site,	we	typically	have	admin	panel,	accessible	after	login,	based	on	username	+	password.

Developers	often	need	to	keep	user	passwords	in	the	database	for	their	sites,	apps	or	other	systems.	There	are
many	ways	to	implement	password-based	authentication.	Let's	review	them	and	discuss	the	good	and	bad
practices.

Clear-Text	Passwords	-	Never	Do	Anti-Pattern
The	easiest	and	most	highly	insecure	method	for	password-based	authentication	is	to	use	clear-text	passwords
written	directly	in	the	database.

Never	do	this!!!	It	is	anti-pattern	for	software	development.	It	is	bad	for	many	reasons.
To	check	the	password,	just	compare	the	password	for	checking	with	password	from	the	database.
Admins	will	be	able	to	see	user's	passwords,	but	some	users	use	the	same	password	for	GMail,	Facebook,
Twitter,	etc.	Admins	should	never	know	user's	passwords,	but	should	be	able	to	change	them	in	case	of
emergency.
Another	problem	is	that	is	someone	hacks	the	server	and	gain	access	to	the	database,	he	will	see	all	user's
passwords	in	plaintext.
It	is	very	bad	practice	to	keep	plaintext	passwords	in	any	information	system	/	app	in	the	world!

Simple	Password	Hash	-	Highly	Insecure
A	relative	easy	and	relatively	insecure	method	for	password-based	authentication	is	to	use	password	hash	like
SHA-256(password),	written	directly	in	the	database.

Avoid	this!	It	is	highly	insecure	method.	Why?	Because	hashes	are	vulnerable	to	dictionary	attacks.
To	check	the	password,	just	compare	the	hash(password	for	checking)	with	the	password	hash	from	the
database.
Crackers	who	gain	access	to	the	database,	can	use	a	dictionary	holding	the	hashes	of	the	most	commonly	used
10	million	passwords	and	most	passwords	will	be	decrypted.	The	dictionary	attack	process	is	extremely	fast,
because	it	compares	the	hashes	from	the	dictionary	with	the	password	hash	(trivial	string	compare).
Search	in	Internet	for	free	dictionaries	/	wordlists	for	dictionary	attack.

Salted	Hashed	Passwords	-	Secure,	but	Not	Enough
More	complicated	and	relatively	secure	method	for	password-based	authentication	is	to	use	salted	hashed
passwords,	written	in	the	database	as	pair	{	salt	+	hash(password	+	salt)	}.	The	hash	function	can	be	any
cryptographic	hash	like	SHA-256.

The	idea	is	to	keep	different	random	salt,	along	with	different	password	hash,	changed	every	time,	when	the
password	is	written	in	the	database.	Thus	the	same	password	is	encrypted	every	time	as	different	ciphertext	{
salt	+	hash	}.
To	check	the	password,	calculate	the	hash	from	the	password	for	checking	with	the	salt	from	the	database.
Compare	the	calculated	hash	with	the	hash	from	the	database.
This	method	works	well	to	prevent	dictionary	attacks,	but	does	not	prevent	GPU-based	and	ASIC-based
password	cracking	attacks.	It	has	also	the	same	security	problems	like	using	hash(key	+	msg)	instead	of
HMAC(key,	msg),	e.g.	length-extension	attack.
Basically	keeping	salted	hashed	passwords	is	more	secure	than	the	previous	ones,	but	still	avoid	it.	Just	use
better	password	hashing	function	instead	of	simple	hash.

Password	Encryption

47

https://www.google.com/search?q=password+cracking+dictionary+download
https://en.wikipedia.org/wiki/Length_extension_attack

Secure	KDF-Based	Password	Hashing	-	Recommended
The	most	complicated	and	most	secure	method	for	password-based	authentication	is	to	use	KDF-based	password
hash,	written	in	the	database	as	pair	{	salt	+	KDF(password,	salt)	}.	The	key-derivation	function	(KDF)	should	be
strong	and	secure,	e.g.	Scrypt	or	Argon2	with	carefully	selected	parameters.

The	idea	is	to	keep	different	random	salt	for	each	encrypted	password,	along	with	the	key	derived	by	a	secure
KDF-function,	such	as	Scrypt	or	Argon2	(with	reasonable	number	of	iterations	and	RAM	consumption	settings).
To	check	the	password,	take	the	salt	from	the	database	and	derive	a	key	from	the	password	for	checking,
using	the	same	KDF	function	and	KDF	parameters	like	when	the	password	was	stored	in	the	database.	Compare
the	derived	key	with	the	key	from	the	database.
This	method	is	resistant	to	most	attacks	and	is	considered	as	standard	in	the	software	industry.	It	is	as	secure
as	the	KDF	function	with	the	selected	KDF	parameters.

Conclusion:	use	secure	KDF	functions	like	Argon2	and	Scrypt	to	keep	encrypted	passwords	in	the	database.	Never
use	plain-text	passwords!

Password	Encryption

48

Exercises:	Encrypt	Passwords	for	User	Register	/
Login
...

Exercises:	Password	Encryption

49

Secure	Random	Number	Generators,	PRNG	and
CSPRNG
In	cryptography	the	randomness	(entropy)	plays	very	important	role.	In	many	algorithms,	we	need	random	(i.e.
unpredictable)	numbers.	If	these	numbers	are	not	truly	random,	the	algorithms	will	be	compromised.

For	example,	assume	we	need	a	secret	key,	that	will	protect	our	crypto	assets.	This	secret	key	should	be	randomly
generated	in	a	way	that	nobody	else	should	be	able	to	generate	or	have	the	same	key.	If	we	generate	the	key	from	a
true	random	generator,	the	it	will	be	unpredictable	and	the	system	will	be	secure.	Therefore	"secure	random"
means	"unpredictable	random".

Let's	discuss	in	bigger	detail	the	random	numbers	in	computer	science	and	their	role	in	cryptography,	as	well	as
pseudo-random	numbers	generators	(PRNG),	secure	pseudo-random	generators	(CSPRNG)	and	some	guidelines
about	how	developers	should	generate	and	use	random	numbers	in	their	code.

Random	Generators	and	Cryptography
In	computer	science	random	numbers	usually	come	from	a	pseudo-random	number	generators	(PRNG),
initialized	by	some	unpredictable	initial	randomness	(entropy).

Pseudo-Random	Number	Generators
PRNGs	are	functions	that	start	from	some	initial	entropy	(seed)	and	calculate	the	next	random	number	by	some
calculation	which	is	unpredictable	without	the	seed.	Such	calculations	are	called	pseudo-random	functions.

Pseudo-random	functions	usually	use	an	internal	state.	At	the	start,	the	state	is	initialized	by	an	initial	seed.	When
the	next	random	number	is	generated,	it	is	calculated	from	the	internal	state	(using	some	computation	or	formula),
then	the	internal	state	of	the	pseudo-random	function	is	changed	(using	some	computation	or	formula).	When	the
next	random	number	is	generated,	it	is	again	calculated	based	on	the	internal	state	of	the	function	and	this	state	is
again	changed	and	so	on.

This	process	in	its	simplest	form	can	be	implemented	as	follows:

init(entropy):
		state	=	entropy,	counter	=	0
netNum():
		state	=	HMAC(state,	++counter)
		return	state

Of	course,	the	HMAC	function	can	be	changed	by	some	cryptographic	hash	function	or	another	mathematical
transformation	like	the	Mersenne	Twister,	but	the	main	idea	stays	the	same:	pseudo-random	generators	have
internal	state,	initialized	with	some	initial	randomness	and	over	the	time	change	their	internal	state	and	generate
pseudo-random	numbers,	based	on	the	current	state.	Good	random	number	generators	should	be	fast	and	should
generate	statistical	randomness	(see	the	Diehard	tests),	i.e.	all	numbers	should	have	the	same	chance	to	be
generated	over	the	time.

The	above	idea	to	generate	random	pseudo-numbers	based	on	HMAC(key	+	counter),	with	some	complications,	is
known	as	the	HMAC_DRGB	algorithm,	described	in	the	security	standard	NIST	800-90A.

Secure	Random	Generators

50

https://en.wikipedia.org/wiki/Mersenne_Twister
https://en.wikipedia.org/wiki/Diehard_tests
https://www.cs.cmu.edu/~kqy/resources/thesis.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90a.pdf

Initial	Entropy	(Seed)
To	be	secure,	a	PRNG	(which	is	statistically	random)	should	start	by	a	truly	random	initial	seed,	which	is	absolutely
unpredictable.	If	the	seed	is	predictable,	it	will	generate	predictable	sequence	of	random	numbers	and	the	entire
random	generation	process	will	be	insecure.	That's	why	having	unpredictable	randomness	at	the	start	(secure	seed)
is	very	important.

How	to	initialize	the	pseudo-random	generator	in	a	secure	way?	The	answer	is	simple:	collect	randomness
(entropy).

Entropy
In	computer	science	"entropy"	means	unpredictable	randomness,	and	is	usually	measured	in	bits.	For	example,	if
you	move	your	computer's	mouse,	it	will	generate	some	hard-to-predict	events,	like	the	start	location	and	the	end
location	of	the	mouse	cursor.	If	we	assume	that	the	mouse	has	changed	its	position	in	the	range	of	[0...255]	pixels,	the
entropy	collected	from	this	mouse	movement	should	be	about	8	bits	(because	2^8	=	255).	Another	example:	if	the
user	is	asked	to	think	of	a	number	in	the	range	[0...1000],	this	number	will	hold	about	9-10	bits	of	entropy	(because
2^10	=	1024).	To	collect	256	bits	of	entropy	(e.g.	to	securely	generate	a	256-bit	integer),	you	will	need	to	take	into
account	a	sequence	of	several	such	events	(like	mouse	movements	and	keyboard	interracions	from	the	user).

Collecting	Entropy
Entropy	can	be	collected	from	many	hard-to-predict	events	in	the	computer:	keyboard	clicks,	mouse	moves,	network
activity,	camera	activity,	microphone	activity	and	others,	combined	with	the	time	at	which	they	occur.	This	collection	of
initial	randomness	is	usually	performed	internally	by	the	operating	system	(OS),	which	provides	standard	API	to
access	it	(e.g.	reading	from	the		/dev/random		file	in	Linux).	In	desktop	system,	laptop	or	mobile	phone	entropy	is

easy	to	collect,	while	on	some	limited	hardware	devices	(such	as	simple	microcontrollers)	entropy	is	hard	or
impossible	to	be	collected.

Application	software	can	collect	entropy	explicitly,	by	asking	the	user	to	move	the	mouse,	type	something	at	the
keyboard,	say	something	at	the	microphone	or	move	in	front	of	the	camera	for	a	while.	A	great	example	of	this	is	the
bitaddress.org	wallet	app,	which	combines	mouse	moves	with	keyboard	events	to	collect	entropy:

Once	enough	entropy	is	collected,	it	is	used	to	initialize	the	random	generator.

Secure	Random	Generators

51

https://www.bitaddress.org

Insecure	Randomness
Insecure	/	compromised	randomness	can	compromise	cryptography.	A	good	example	to	learn	from	is	the	story	of	the
stolen	Bitcoins,	due	to	broken	random	generator	in	Android:	https://goo.gl/PFE1kr.	That's	why	developers	should
care	about	randomness,	when	they	use	cryptography	and	ensure	their	random	generators	are	secure.

Insecure	Randomness	-	Examples
As	example	how	easy	it	is	to	compromise	the	random	number	security	in	Python	(in	its	old	versions),	we	shall
give	this	code	example:

import	random
print(random.randrange(1000000,	9999999))

The	above	code	is	assumed	to	generate	a	random	number,	but	this	number	may	be	predictable.	This	is	because	the
	random		library	in	Python	(in	its	old	versions)	initializes	the	random	generator	seed	by	the	current	time.	Thus,	if	you
know	the	current	time	at	the	machine	generating	the	random	number	(obviously	you	know	this	roughly),	you	will	be
able	to	predict	the	random	seed	and	to	predict	the	random	numbers	generated.

To	better	illustrate	this,	look	at	this	more	explicit	example	which	generates	two	random	50-digit	integers:

import	random,	time

random.seed(time.time())
r1	=	random.randrange(1e49,	1e50-1)

random.seed(time.time())
r2	=	random.randrange(1e49,	1e50-1)

print(r1)
print(r2)

The	above	code	will	print	two	equal	numbers,	both	depending	on	the	current	time.	It	is	obvious	that	the	same	time	in
the	initial	seed	causes	the	same	(predictable)	pseudo-random	numbers	to	be	generated	in	the	output.	This	is	a
sample	output	of	the	above	code:

53285353661739398833155340591358345604323255820576
53285353661739398833155340591358345604323255820576

If	you	run	this	code	through	a	debugger	or	in	a	slow	environment,	the	produced	numbers	may	be	different,	due	to
time	change	between	the	two	random	generation	executions.	Typically	the	Python	interpreter	at	the	interactive
console	produces	two	different	numbers.	To	obtain	the	result,	similar	to	the	above,	first	save	the	code	in	a	script	file
(e.g.		insecure-rnd.py)	and	then	execute	the	Python	script	file:

Secure	Random	Generators

52

https://goo.gl/PFE1kr

Basically,	when	the	initial	random	seed	is	initialized	with	a	predictable	number	like	the	current	time,	crackers	can	try
all	possibilities	within	the	range	of	+/-	5	seconds	and	find	the	exact	initial	seed	and	then	compromise	the	security.

Randomness	and	Cryptography
Remember	that	cryptography	cannot	work	without	unpredictable	randomness!	If	your	random	generator	is
compromised,	it	will	generate	predictable	numbers	and	crackers	will	be	able	to	decrypt	your	communication,	reveal
your	private	keys,	tamper	your	digital	signatures,	etc.	As	a	developer,	you	should	always	care	how	random	numbers
are	generated	in	the	cryptographic	libraries	you	use.

Conclusion:	Use	Secure	Random	Generator
Always	use	cryptographically	secure	random	generator	libraries,	like	the		java.security.SecureRandom		in
Java	and	the		secrets		library	in	Python:

import	secrets
print(secrets.randbelow(int(1e50)))

The	above	code	does	not	depend	on	the	current	time	and	basically	generates	an	unpredictable	random	number,
based	on	the	entropy	collected	by	the	operating	system.

Secure	Random	Generators

53

Generating	Pseudo	Random	Numbers	-	Example	in
Python
To	get	a	better	idea	how	pseudo-random	numbers	are	generated	in	computer	programming,	let's	play	with	at	the
following	Python	code,	which	generates	5	pseudo-random	numbers	in	the	range	[10...20]:

import	hashlib,	time

startSeed	=	str(time.time())	+	'|'
min	=	10
max	=	20
for	i	in	range(5):
				nextSeed	=	startSeed	+	str(i)
				hash	=	hashlib.sha256(nextSeed.encode('ascii')).digest()
				bigRand	=	int.from_bytes(hash,	'big')
				rand	=	min	+	bigRand	%	(max	-	min	+	1)
				print(nextSeed,	bigRand,	'-->',	rand)

The	above	code	produces	time-depended	(predictable)	pseudo-random	sequence:

1539884529.7564313|0	80821949188459167822103620715837790870744533466506114260335306835341654
043374	-->	20
1539884529.7564313|1	74025479792630401388590516952955656999942018130178317853592496371994668
720404	-->	12
1539884529.7564313|2	82017697577161203981429946799250236982499988253633196542465974577893633
076425	-->	18
1539884529.7564313|3	10738699706699562929083446539486735923927571219474791024756709089122394
9362198	-->	13
1539884529.7564313|4	83874630241630198317549470506043001102325518306912594861433838548293113
930135	-->	10

The	initial	pseudo-random	seed	is	taken	from	the	current	time.	The	first	pseudo-random	number	in	the	sequence
comes	from	the	SHA-256	hash	of	the	initial	seed	+	the	number		0	,	the	second	pseudo-random	number	comes	from
the	hash	of	the	initial	seed	+	the	number		1		and	so	on.	To	get	an	output	of	certain	range	[min...max]	the	256-bit
hash	is	divided	to	(max	-	min	+	1)	and	min	is	added	to	it.	The	number		i	,	together	with	the	value		startSeed		hold
the	internal	state	of	the	random	generator,	which	changes	for	each	next	random	number.

The	above	pseudo-random	generator	is	based	on	the	random	statistical	distribution	of	the	SHA-256	function.	It	is
expected	that	the	chance	for	each	possible	number	to	be	generated	is	equal.

Creating	a	Secure	Random	Generator
The	above	random	generator	is	not	secure,	because	it	is	not	initialized	by	an	unpredictable	source	of	entropy.	Let's
fix	this.

We	shall	initialize	the	initial	randomness	based	on	the	keyboard	events.	The	user	will	be	asked	to	enter
something	5	times	and	the	exact	precise	times	of	the	moments	of	the	user	input,	together	with	the	data	entered	from
the	user	will	be	joined	as	initial	randomness	(seed).	The	collected	text	entropy	can	be	shortened	through	SHA-256
hashing	(this	will	reduce	it	to	256	bits).	After	the	entropy	is	collected	and	the	start	seed	is	calculated,	the	same	logic
like	at	the	previous	example	will	be	used	to	generate	5	random	numbers	in	the	range	[10...20].	This	is	a	sample
Python	implementation:

import	hashlib,	time,	binascii

Pseudo-Random	Numbers	-	Examples

54

entropy	=	''
for	i	in	range(5):
				s	=	input("Enter	something	["	+	str(i+1)	+	"	of	5]:	")
				entropy	=	entropy	+	s	+	'|'	+	str(time.time())	+	'|'
print("Entropy:",	entropy)
startSeed	=	str(binascii.hexlify(hashlib.sha256(entropy.encode('ascii')).digest()))[2:-1]
print("Start	seed	=	SHA-256(entropy)	=",	startSeed)

min	=	10
max	=	20
for	i	in	range(5):
				nextSeed	=	startSeed	+	'|'	+	str(i)
				hash	=	hashlib.sha256(nextSeed.encode('ascii')).digest()
				bigRand	=	int.from_bytes(hash,	'big')
				rand	=	min	+	bigRand	%	(max	-	min	+	1)
				print(nextSeed,	bigRand,	'-->',	rand)

A	sample	output	from	the	above	code	may	look	like	this:

Enter	something	[1	of	5]:	first
Enter	something	[2	of	5]:	second
Enter	something	[3	of	5]:	random	text
Enter	something	[4	of	5]:	dfasfdasfs
Enter	something	[5	of	5]:	last
Entropy:	first|1539885709.4494743|second|1539885713.687703|random	text|1539885721.5754962|df
asfdasfs|1539885724.40904|last|1539885726.1286101|
Start	seed	=	SHA-256(entropy)	=	f8a4eaceb16156b1a23f4b6d08e54665ffa4822949b22e01d6de4c5daae9
65e3
f8a4eaceb16156b1a23f4b6d08e54665ffa4822949b22e01d6de4c5daae965e3|0	8448277025956683909793686
6229004786554948913905882724148636325987196754263481	-->	19
f8a4eaceb16156b1a23f4b6d08e54665ffa4822949b22e01d6de4c5daae965e3|1	6700145465903016445734242
1011672033052466168976555224352709830050538321411120	-->	14
f8a4eaceb16156b1a23f4b6d08e54665ffa4822949b22e01d6de4c5daae965e3|2	1037391815072910725723150
34266940107849472122762876847172454548630886082729227	-->	12
f8a4eaceb16156b1a23f4b6d08e54665ffa4822949b22e01d6de4c5daae965e3|3	3011033199204097839903859
902789759740091959530467456042709372597822032778153	-->	16
f8a4eaceb16156b1a23f4b6d08e54665ffa4822949b22e01d6de4c5daae965e3|4	1004660947249247636598436
69256673300207383922129676800217664465341535622195997	-->	16

Note	that	the	collected	entropy	is	very	hard	to	be	predicted.	The	cracker	should	guess	all	the	text	entered	by	the
user	and	also	guess	the	exact	time	for	each	of	the	5	inputs.	If	the	above	is	repeated	20	instead	of	5	times,	it	will	be
even	harder	to	predict	(the	collected	entropy	will	be	bigger).

Some	cryptographical	software	use	similar	techniques	like	in	the	above	code	example	when	generating	keys,
password	and	randomness	as	general	and	now	you	know	why:	to	collect	entropy	in	an	unpredictable	way.

Pseudo-Random	Numbers	-	Examples

55

Secure	Random	Generators	(CSPRNG)
Cryptography	secure	pseudo-random	number	generators	(CSPRNG)	are	random	generators,	which	guarantee	that
the	random	numbers	coming	from	them	are	absolutely	unpredictable.	Depending	on	the	level	of	security	required,
CSPRNG	can	be	implemented	as	software	components	or	as	hardware	devices	or	as	combination	of	both.

For	example,	in	the	credit	card	printing	centers	the	formal	security	regulations	require	certified	hardware	random
generators	to	be	used	to	generate	credit	card	PIN	codes,	private	keys	and	other	data,	designed	to	remain	private.

Modern	operating	systems	(OS)	collect	entropy	(initial	seed)	from	the	environmental	noise:	keyboard	clicks,	mouse
moves,	network	activity,	system	I/O	interruptions,	etc.	Sources	of	randomness	from	the	environment	in	Linux,	for
example,	include	inter-keyboard	timings,	inter-interrupt	timings	from	some	interrupts,	and	other	events	which	are	both
non-deterministic	and	hard	to	measure	for	an	outside	observer.

The	collected	in	the	OS	randomness	is	usually	accessible	from		/dev/random		and		/dev/urandom	.

Reading	from	the		/dev/random		file	(the	limited	blocking	random	generator)	returns	entropy	from	the	kernel's
entropy	pool	(collected	noise)	and	blocks	when	the	entropy	pool	is	empty	until	additional	environmental	noise	is
gathered.
Reading	the		/dev/urandom		file	(the	unlimited	non-blocking	random	generator)	returns	entropy	from	the	kernel's

entropy	pool	or	a	pseudo-random	data,	generated	from	previously	collected	environmental	noise,	which	is	also
unpredictable.

Usually	a	CSPRNG	should	start	from	a	truly	random	seed	from	the	operating	system,	from	a	specialized	hardware	or
from	external	source.	Random	numbers	after	the	seed	initialization	are	typically	produces	by	a	pseudo-random
computation,	but	this	does	not	compromise	the	security.

Typically	modern	OS	APIs	combine	the	constantly	collected	entropy	from	the	environment	with	the	internal	state	of
their	built-in	pseudo-random	algorithm	to	guarantee	maximal	unpredictability	of	the	generated	randomness	with	high
speed	and	non-blocking	behavior	in	the	same	time.

Hardware	Random	Generators	(TRNG)
Hardware	random	generators,	known	as	true	random	number	generators	(TRNG),	typically	capture	physical
processes	or	phenomenа,	such	as	the	visible	spectrum	of	the	light,	the	thermal	noise	from	the	environment,	the
atmosphere	noise,	etc.	The	randomness	from	the	physical	environment	is	collected	through	specialized	sensors,	then
amplified	and	processed	by	the	device	and	finally	transmitted	to	the	computer	through	USB,	PCI	Express	or	other
standard	interface.

Modern	microprocessors	(CPU)	provide	a	built-in	hardware	random	generator,	accessible	through	a	special	CPU
instruction		RdRand	,	which	return	a	random	integer	into	one	of	the	CPU	registers.

Most	cryptographic	applications	today	do	not	require	a	hardware	random	generator,	because	the	entropy	in	the
operating	system	is	secure	enough	for	general	cryptographic	purposes.	Using	a	TRNG	is	needed	for	systems	with
higher	security	requirements,	such	as	banking	and	finance	applications,	certification	authorities	and	high	volume
payment	processors.

How	as	a	Developer	to	Access	the	CSPRNG?
Typically	developers	access	the	cryptographically	strong	random	number	generators	(CSPRNG)	for	their	OS	from	a
cryptography	library	for	their	language	and	platform.

In	Linux	and	macOS,	it	is	considered	that	both		/dev/random		and		/dev/urandom		sources	of	randomness	are
secure	enough	for	most	cryptographic	purposes	and	most	cryptographic	libraries	access	them	internally.

Secure	Random	Generators	(CSPRNG)

56

https://en.wikipedia.org/wiki/RdRand

In	Windows,	random	numbers	for	cryptographic	purposes	can	be	securely	generated	using	the
	BCryptGenRandom		function	from	the	Cryptography	API:	Next	Generation	(CNG)	or	higher	level	crypto	libraries.

In	C#	use		System.Security.Cryptography.RandomNumberGenerator.Create()		from	.NET	Framework	or
.NET	Core.

In	Python	use		os.urandom()		or	the		secrets		library.

In	Java	use	the		java.security.SecureRandom		system	class.

In	JavaScript	use		window.crypto.getRandomValues(Uint8Array)		for	client	side	(in	the	Web	browser)	or

	crypto.randomBytes()		or	external	module	like		node-sodium		for	server-side	(in	Node.js).

Never	use		Math.random()		or	similar	insecure	RNG	functions	for	cryptographic	purposes!

Secure	Random	Generators	(CSPRNG)

57

https://docs.microsoft.com/windows/desktop/SecCNG/cng-portal

Exercises:	Implement	a	Pseudo-Random	Generator
Write	a	code	to	generate	30	pseudo-random	integers	in	the	range	[1...10],	starting	from	certain	entropy,	taken	as
input,	using	HMAC	key	derivation.

From	the	entropy	generate	a	seed	(256-bit	binary	sequence)	using	SHA-256:

seed	=	SHA256(entropy)

Generate	the	n-th	random	number	by	the	formula:

1	+	HMAC-SHA256(n,	seed)	%	10

Print	the	numbers	at	the	output,	separated	by	space.

Sample	input	and	corresponding	output:

Input Output

hello 8	4	10	5	5	3	5	7	10	6	4	9	2	3	2	8	3	3	10	6	8	10	9	10	1	3	6	4	4	10

random	text 10	5	5	9	7	4	2	9	2	1	10	4	8	9	8	1	8	6	5	7	5	4	3	4	6	6	9	8	1	1

fun 6	5	9	2	2	5	1	6	10	10	10	1	8	10	6	9	2	1	5	10	1	4	8	5	6	3	8	4	2	1

Exercises:	Pseudo-Random	Generator

58

Key	Exchange	/	Key	Establishment	Schemes
In	cryptography	key	establishment	(key	exchange,	key	negotiation)	is	a	process	or	protocol,	whereby	a	shared
secret	becomes	available	to	two	parties,	for	subsequent	cryptographic	use,	typically	for	encrypted	communication.
Establishment	techniques	can	be	key	agreement	or	key	transport	schemes.

In	a	key	agreement	scheme	both	parties	contribute	to	the	negotiation	of	the	shared	secret.	Examples	of	key
agreement	schemes	are	Diffie-Hellman	(DHKE)	and	Elliptic-Curve	Diffie-Hellman	(ECDH).

In	a	key	transport	scheme	only	one	of	the	parties	contributes	to	the	shared	secret	and	the	other	party	obtains
the	secret	from	it.	Key	transport	schemes	are	typically	implemented	through	public-key	cryptography,	e.g.	in
the	RSA	key	exchange	the	client	encrypts	a	random	session	key	by	its	private	key	and	sends	it	to	the	server,
where	it	is	decrypted	using	the	client's	public	key.

By	design	key	exchange	schemes	securely	exchange	cryptographic	keys	between	two	parties,	in	a	way	that	noone
else	can	obtain	a	copy	of	the	keys.	Typically,	at	the	start	of	an	encrypted	conversation	(e.g.	during	the	TLS
handshake	phase),	the	parties	first	negotiate	about	the	encryption	keys	(the	shared	secret)	to	be	used	during	the
conversation.	Key	exchange	schemes	are	really	important	topic	in	the	modern	cryptography,	because	keys	are
exchanged	hundreds	of	times	by	million	devices	and	servers	in	Internet.

A	key	negotiation	(key	establishment)	scheme	is	executed	every	time	when	a	laptop	connects	to	the	Wi-Fi	network
or	a	Web	browser	opens	a	Web	site	through	the		https://		protocol.	The	key	negotiation	can	be	based	on	a

annonymous	key-exchange	protocol	(like	DHKE),	a	password	or	pre-shared	key	(PSK),	a	digital	certificate	or	a
combination	of	many	elements	together.	Some	communication	protocols	establish	a	shared	secret	key	once	only,
while	others	constantly	change	the	secret	key	over	the	time.

Authenticated	Key	Exchange	(AKE)	is	the	exchange	of	session	key	in	a	key	exchange	protocol	which	also
authenticates	the	identities	of	the	involved	parties	(e.g.	through	a	password,	public	key	or	digital	certificate).	For
example,	if	you	connect	to	a	password-protected	WiFi	network,	an	authenticated	key	agreement	protocol	is	used,	in
most	cases	password-authenticated	key	agreement	(PAKE).	If	you	connect	to	a	public	WiFi	network,	anonymous
key	agreement	is	conducted.

Key	Exchange	/	Key	Agreement	Algorithms
Many	cryptographic	algorithms	exist	for	key	exchange	and	key	establishment.	Some	use	public-key	cryptosystems,
others	use	simple	key-exchange	schemes	(like	the	Diffie–Hellman	Key	Exchange),	some	involve	server
authentication,	some	involve	client	authentication,	some	use	passwords,	some	use	digital	certificates	or	other
authentication	mechanisms.

Examples	of	key	exchange	schemes	are:	Diffie–Hellman	key	exchange	(DHКЕ)	and	Elliptic-curve	Diffie–Hellman
(ECDH),	RSA-OAEP	and	RSA-KEM	(RSA	key	transport),	PSK	(pre-shared	key),	SRP	(Secure	Remote	Password
protocol),	FHMQV	(Fully	Hashed	Menezes-Qu-Vanstone),	ECMQV	(Ellictic-Curve	Menezes-Qu-Vanstone)	and
CECPQ1	(quantum-safe	key	agreement).

Let's	start	from	the	classical	Diffie–Hellman	Key	Exchange	(DHКЕ)	scheme,	which	was	one	of	the	first	public	key
protocols.

Key	Exchange	and	DHKE

59

http://cacr.uwaterloo.ca/hac/about/chap12.pdf
https://en.wikipedia.org/wiki/Key_exchange
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://tools.ietf.org/html/rfc5990
https://en.wikipedia.org/wiki/Pre-shared_key
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://www.cryptopp.com/wiki/Fully_Hashed_Menezes-Qu-Vanstone
https://www.cryptopp.com/wiki/Elliptic_Curve_Menezes-Qu-Vanstone
https://en.wikipedia.org/wiki/CECPQ1

Diffie–Hellman	Key	Exchange	(DHKE)
Diffie–Hellman	Key	Exchange	(DHKE)	is	a	cryptographic	method	to	securely	exchange	cryptographic	keys	(key
agreement	protocol)	over	a	public	(insecure)	channel	in	a	way	that	overheard	communication	does	not	reveal	the
keys.	The	exchanged	keys	are	used	later	for	encrypted	communication	(e.g.	using	a	symmetric	cipher	like	AES).

DHKE	was	one	of	the	first	public-key	protocols,	which	allows	two	parties	to	exchange	data	securely,	so	that	is
someone	sniffs	the	communication	between	the	parties,	the	information	exchanged	can	be	revealed.

The	Diffie–Hellman	(DH)	method	is	anonymous	key	agreement	scheme:	it	allows	two	parties	that	have	no	prior
knowledge	of	each	other	to	jointly	establish	a	shared	secret	key	over	an	insecure	channel.

Note	that	the	DHKE	method	is	resistant	to	sniffing	attacks	(data	interception),	but	it	is	vulnerable	to	man-in-the-
middle	attacks	(attacker	secretly	relays	and	possibly	alters	the	communication	between	two	parties).

The	Diffie–Hellman	Key	Exchange	protocol	can	be	implemented	using	discrete	logarithms	(the	classical	DHKE
algorithm)	or	using	elliptic-curve	cryptography	(the	ECDH	algorithm).

Key	Exchange	by	Mixing	Colors
The	Diffie–Hellman	Key	Exchange	protocol	is	very	similar	to	the	concept	of	"key	exchanging	by	mixing	colors",
which	has	a	good	visual	representation,	which	simplifies	its	understanding.	This	is	why	we	shall	first	explain	how	to
exchange	a	secret	color	by	color	mixing.

The	design	of	color	mixing	key	exchange	scheme	assumes	that	if	we	have	two	liquids	of	different	colors,	we	can
easily	mix	the	colors	and	obtain	a	new	color,	but	the	reverse	operation	is	almost	impossible:	no	way	to	separate
the	mixed	colors	back	to	their	original	color	components.

This	is	the	color	exchange	scenario,	step	by	step:

Alice	and	Bob,	agree	on	an	arbitrary	starting	(shared)	color	that	does	not	need	to	be	kept	secret	(e.g.	yellow).
Alice	and	Bob	separately	select	a	secret	color	that	they	keep	to	themselves	(e.g.	red	and	sea	green).
Finally	Alice	and	Bob	mix	their	secret	color	together	with	their	mutually	shared	color.	The	obtained	mixed	colors
area	ready	for	public	exchange	(in	our	case	orange	and	light	sky	blue).

Diffie–Hellman	Key	Exchange

60

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Sniffing_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman

The	next	steps	in	the	color	exchanging	scenario	are	as	follows:

Alice	and	Bob	publicly	exchange	their	two	mixed	colors.
We	assume	that	there	is	no	efficient	way	to	extract	(separate)	the	secret	color	from	the	mixed	color,	so	third
parties	who	know	the	mixed	colors	cannot	reveal	the	secret	colors.

Finally,	Alice	and	Bob	mix	together	the	color	they	received	from	the	partner	with	their	own	secret	color.
The	result	is	the	final	color	mixture	(yellow-brown)	which	is	identical	to	the	partner's	color	mixture.
It	is	the	securely	exchanged	shared	key.

Diffie–Hellman	Key	Exchange

61

If	a	third	parties	have	intercepted	the	color	exchanging	process,	it	would	be	computationally	difficult	for	them	to
determine	the	secret	colors.

The	Diffie-Hellman	Key	Exchange	protocol	is	based	on	similar	concept,	but	uses	discrete	logarithms	and	modular
exponentiations	instead	of	color	mixing.

The	Diffie-Hellman	Key	Exchange	(DHKE)	Protocol
Now,	let's	explain	how	the	DHKE	protocol	works.

Diffie–Hellman	Key	Exchange

62

https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Modular_exponentiation

The	Math	behind	DHKE
DHKE	is	based	on	a	simple	property	of	modular	exponentiations:

(g) 	mod	p	=	(g) 	mod	p

where	g,	a,	b	and	p	are	positive	integers.

If	we	have	A	=	g 	mod	p	and	B	=	g 	mod	p,	we	can	calculate	g 	mod	p,	without	revealing	a	or	b	(which	are	called
secret	exponents).

In	computing	theory,	these	is	no	efficient	algorithm	which	can	find	a	secret	exponent.	If	we	have	m,	g	and	p	from	the
below	equation:

m	=	g 	mod	p

there	is	no	efficient	(fast)	algorithm	to	find	the	secret	exponent	s.	This	is	known	as	the	Discrete	Logartihm	Problem
(DLP).

Discrete	Logarithm	Problem	(DLP)
The	Discrete	Logarithm	Problem	(DLP)	in	computer	science	is	defined	as	follows:

By	given	element	b	and	value	a	=	b 	find	the	exponent	x	(if	it	exists)

The	exponent	x	is	called	discrete	logarithm,	i.e.	x	=	log (a).	The	elements	a	and	b	can	be	simple	integers	modulo	p
(from	the	group	ℤ/pℤ)	or	elements	of	finite	cyclic	multiplicative	group	G	(modulo	p),	where	p	is	typically	a	prime
number.

In	cryptography,	many	algorithms	rely	on	the	computational	difficulty	of	the	DLP	problem	over	carefully	chosen
group,	for	which	no	efficient	algorithm	exists.

The	DHKE	Protocol
Now,	after	we	are	familiar	with	the	above	mathematical	properties	of	the	modular	exponentiations,	we	are	ready	to
explain	the	DHKE	protocol.	This	is	how	it	works:

Let's	explain	each	step	of	this	key-exchange	process:

a b b a

a b ab

s

x

b

Diffie–Hellman	Key	Exchange

63

https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Discrete_Logarithm_Problem_%28DLP%29
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
https://en.wikipedia.org/wiki/Cyclic_group

Alice	and	Bob	agree	to	use	two	public	integers:	modulus	p	and	base	g	(where	p	is	prime,	and	g	is	a	primitive
root	modulo	p).

For	example,	let	p	=	23	and	g	=	5.
The	integers	g	and	p	are	public,	typically	hard-coded	constants	in	the	source	code.

Alice	chooses	a	secret	integer	a	(e.g.	a	=	4),	then	calculates	and	sends	to	Bob	the	number	A	=	g 	mod	p.

The	number	A	is	public.	It	is	sent	over	the	public	channel	and	its	interception	cannot	reveal	the	secret
exponent	a.
In	our	case	we	have:	A	=	5 	mod	23	=	4.

Bob	chooses	a	secret	integer	b	(e.g.	b	=	3),	then	calculates	and	sends	to	Alice	the	number	B	=	g 	mod	p.

In	our	case	we	have:	B	=	5 	mod	23	=	10
Alice	computes	s	=	B 	mod	p

In	our	example:	s	=	10 	mod	23	=	18
Bob	computes	s	=	A 	mod	p

In	our	example:	s	=	4 	mod	23	=	18
Alice	and	Bob	now	share	a	secret	number	s

s	=	A 	mod	p	=	B 	mod	p	=	(g) 	mod	p	=	(g) 	mod	p	=	g 	mod	p	=	18
The	shared	secret	key	s	cannot	be	computed	from	the	publicly	available	numbers	A	and	B,	because	the
secret	exponents	a	and	b	cannot	be	efficiently	calculated.

In	the	most	common	implementation	of	DHKE	(following	the	RFC	3526)	the	base	is	g	=	2	and	the	modulus	p	is	a	large
prime	number	(1536	...	8192	bits).

Security	of	the	DHKE	Protocol
The	DHKE	protocol	is	based	on	the	practical	difficulty	of	the	Diffie–Hellman	problem,	which	is	a	variant	of	the	well
known	in	the	computer	science	DLP	(discrete	logarithm	problem),	for	which	no	efficient	algorithm	still	exists.

DHKE	exchanges	a	non-secret	sequence	of	integer	numbers	over	insecure,	public	(sniffable)	channel	(such	as
signal	going	through	a	cable	or	propagated	by	waves	in	the	air),	but	does	not	reveal	the	secretly-exchanged	shared
private	key.

Again,	be	warned	that	DHKE	protocol	in	its	classical	form	is	vulnerable	to	man-in-the-middle	attacks,	where	a
hacker	can	intercept	and	modify	the	messages	exchanged	between	the	parties.

Finally,	note	that	the	integers	g,	p,	a	and	p	are	typically	very	big	numbers	(1024,	2048	or	4096	bits	or	even	bigger)
and	this	makes	the	brute-force	attacks	non-sense.

DHKE	-	Live	Example
As	live	example,	you	can	play	with	this	online	DHKE	tool:	http://www.irongeek.com/diffie-hellman.php

a

4
b

3
a

4
b

3

b a a b b a ab

Diffie–Hellman	Key	Exchange

64

https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Primitive_root_modulo_n
https://tools.ietf.org/html/rfc3526
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_problem
https://en.wikipedia.org/wiki/Discrete_Logarithm_Problem_%28DLP%29
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Brute-force_attack
http://www.irongeek.com/diffie-hellman.php

ECDH	-	Elliptic	Curves-based	Diffie-Hellman	Key	Exchange
Protocol
The	Elliptic-Curve	Diffie–Hellman	(ECDH)	is	an	anonymous	key	agreement	protocol	that	allows	two	parties,	each
having	an	elliptic-curve	public–private	key	pair,	to	establish	a	shared	secret	over	an	insecure	channel.

ECDH	is	a	variant	of	the	classical	DHKE	protocol,	where	the	modular	exponentiation	calculations	are	replaced	with
elliptic-curve	calculations	for	improved	security.	We	shall	explain	in	details	the	elliptic-curve	cryptography	(ECC)
section	later.

Diffie–Hellman	Key	Exchange

65

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman

Diffie–Hellman	Key	Exchange	-	Examples	in	Python
Let's	give	a	simple	code	example	in	Python	to	demonstrate	the	classical	Diffie–Hellman	Key	Exchange	(DHKE)
algorithm.

First,	install	the	Python	package		PyDHE	:

pip	install	pyDHE

Next,	write	the	code	for	the	DHKE	example:

import	pyDHE

alice	=	pyDHE.new()
alicePubKey	=	alice.getPublicKey()
print("Alice	public	key:",	hex(alicePubKey))

bob	=	pyDHE.new()
bobPubKey	=	bob.getPublicKey()
print("Bob	public	key:",	hex(bobPubKey))

print("Now	exchange	the	public	keys	(e.g.	through	Internet)")

aliceSharedKey	=	alice.update(bobPubKey)
print("Alice	shared	key:",	hex(aliceSharedKey))

bobSharedKey	=	bob.update(alicePubKey)
print("Bob	shared	key:",	hex(bobSharedKey))

print("Equal	shared	keys:",	aliceSharedKey	==	bobSharedKey)

When	you	run	the	above	code,	it	will	generate	and	print	two	2048-bit	public	keys	(for	Alice	and	for	Bob).	Assume	that
Allice	and	Bob	have	exchanged	their	public	keys	(e.g.	send	them	to	each	other	through	Internet).	Once	Alice	has
received	Bob's	public	key,	she	can	calculate	the	shared	secret	by	combining	it	to	her	private	key.	Respectively,	once
Bob	has	received	Alice's	public	key,	he	can	calculate	the	shared	secret	by	combining	it	to	his	private	key.	The
sample	output	from	the	above	example	shows	that	the	shared	secret	is	always	the	same	number	(2048-bit	integer):

Alice	public	key:	0xa26c2f1354a8f58abbf78172730595c4de8277962ebe92100793f99ea80f66abe5e75a14
a52e86ce1c086c1ca2e1662b3900510346d848b425d34279ceea92661fb1166b9438589c0b57eb4ebb69e0c3844e
be5ad4c0e316b637d47148d69dc2387c2968c82d198114a6c0f14a605a9e85110d24a9db4f11963b9b13dc788c05
38096cadffd258364c63621f6bb1a3e515d3741af4619e62452a394fab9d84be7cee255fdd7216401cafee6471b4
adbb77e93f878f1bb4df633e0632522b51fe70fc154e7d3e60a69f815a4e2a84506f05b1ccfce01e873cd7dc51fb
a0b6eac66af1c0a7500f71af405a6c34ffd27a1239180c22fbddf8dc15d30c821c57307d
Bob	public	key:	0x822660dfff1af80c237402263dda9e0e417fa04547a4e36041a35a152df28b0ac66b059d9e
0034c7cd58b6b7edbc8a20bf1bdc2af6534bd6f2dbcffeb9a4aa9f038461994622f786258beb8f6493594e1559e5
ebf5a92ba60335f668a9ccbf8d6d87460f21d94938ac40cfd78d062571f68aa7e7fbabed4ba582e8e83128867000
4ae64be113a2c7b5b9a472ba4733ea4f29c1b1f30ead3729908d9bb54278a499b2c16cc62d4f330a28cdd302bf65
5f3d724b6d5b0655c9299ada183d8bed4e98c2f0d93339eb3c22c88c9d000de4ea3286b6be5b96e7d7cccb7b8d6a
079264e155c5b25b5aca21ccfed7d21d5dce79845fe5456419504ec9c2a896448572e7
Now	exchange	the	public	keys	(e.g.	through	Internet)
Alice	shared	key:	0x60d96187ae1db8e8acac7795837a2964e4972ebf666eaecfa09135371a2de5287db18c1a
30f2af840f04cac42fea21e42369af5ffbeb235faa42da6bed24cd922ea4637ad146558f2d8b07b19a0084c19f04
1af5456a5826dd836d0c9c4f32ca0a5877da9493af36f66949e76af12e45a20b20c222a37a49b658066bd7b1f79b

DHKE	-	Examples

66

cf81d1083e79c62c43e3ee11f8727e798e310a2683939c06b75ab80c531743d6c03c90007ab8a36af45b3573f4e4
1a2a41c9fdde962493f9ed860597ee527d978e41a413d13198aaac2b27e70aac5be15fd695592350c56b6d74b342
7dcf6888ee11cef4b4d8f5b3acbfbda1d9b8d7425bc9446e1a6424a929d9136590161cfe
Bob	shared	key:	0x60d96187ae1db8e8acac7795837a2964e4972ebf666eaecfa09135371a2de5287db18c1a30
f2af840f04cac42fea21e42369af5ffbeb235faa42da6bed24cd922ea4637ad146558f2d8b07b19a0084c19f041a
f5456a5826dd836d0c9c4f32ca0a5877da9493af36f66949e76af12e45a20b20c222a37a49b658066bd7b1f79bcf
81d1083e79c62c43e3ee11f8727e798e310a2683939c06b75ab80c531743d6c03c90007ab8a36af45b3573f4e41a
2a41c9fdde962493f9ed860597ee527d978e41a413d13198aaac2b27e70aac5be15fd695592350c56b6d74b3427d
cf6888ee11cef4b4d8f5b3acbfbda1d9b8d7425bc9446e1a6424a929d9136590161cfe
Equal	shared	keys:	True

Note	that	your	output	will	be	different	due	to	the	randomness	during	the	key	generation	process.	The	above	code
uses	a	2048-bit	public	and	privvate	keys,	as	specified	in	the	RFC	3526	(group	14).	You	can	change	the	DHKE	key
size	(from	1536-bits	to	8192-bits)	by	specifying	a	different	RFC	3526	group	(e.g.	18	for	8192-bit	keys).	For	example
change	these	two	lines:

alice	=	pyDHE.new(group=18)
bob	=	pyDHE.new(group=18)

The	above	changes	will	switch	to	8192-bit	keys	and	will	significantly	slow-down	the	calculations.	The	output	will	look
like	this:

Alice	public	key:	0x86b2c2bda3982af803084b65d982c08f3462046d154c9ee6fb7c8dcdd4a2922b72487c46
e42777ea8bbfad73ca2f340397ddc2b3ddb215891b4811fe014ae176918cc01817e4d9358e6053ed49790e224721
bd14abe7cdeac10be211782d0b1a110c5968654873b1eb3e591c6e5acd0197459aac04da06620d424b327124dee4
958fe49be3f44100591e8560a0e137abb9c47973e4701b3e127a05482934b3b9fdb4117365c476bb6665d867b2dd
58cab72073bcb6632883fba3043b8544a4726fcd013f1676963d612f634675674de1d295e90101d9a0523ae1717e
b2ea11a05e4902af572a9bfff0344c3383e8b85fa7db234927b053d098eda9fda0970c92917caa95fe4dc79376f6
b8f0ee4a9682c88870c36b345049b3ef89bdcfc0f8751b02afa88b22fd5b94d33a49bcf6d262255ac18e27e96675
f311b654f99fa31e060f7e2afbd888099bba072cefaab1e1c40a73845c139e3feaecee76965b71255473b485976e
7f7d87e2ff61a62ddadd5f7f02e9353f5d4f091360418eb7935e83d1e6355c82feff3583725017e8b8b6148af839
e3e7cfd3d549b679d9878544366676509b61b590ce25abbb440207b23fec9c04daef70590c46d720af273d6dafb3
4d2e5b68e24499a4b7ac254ee000712dd0e4ae72299fb103098b8d54c2c28a66e74d52db4853bb695cbff9a09f82
23c55f1e2fd351d419a091cc643b3abc42a477ef6f3eb9d2913e45bcb3ba76771bccfafa85abe3cf37c42bf1baf5
9f122785ec47b51b45c4ba0875e6a80230c5035e45c1cf32e8b7b52ee44e2c3b06330c29f047dd5b0983ae8db34d
1ca1a127d1da72d4e0244690c63af4ecf3003152a1cfaa5b4139c361cd3cc54fb7e91bdcac9bf81498da90cf2496
21df90947ccbece28c5befec6bf832d873e18293e7b8e9562596c4b50c61e1aff9b8d13a02df25675c5045aec14d
3e83253d210ae7e6f2c62d622c7bcaf87cd6a4bb63a25d18cc0672fe3488eefb058231daf17a570382ffb56e490b
1e5003284ca5a8978aa4c09d3e9a11eae379bd66fe86999c10fbe1eb6763d1b6b4f277e8347462e91f127a0f2fe8
a9a16381452e3515608e950587f74e1f85b10ab32e667248f8764d90a8b92eb6bcce14cf7306fa56bc7852a0f281
1651665f2121a6253e3e4bfecb12b54c8cd11a54d74346c3b9f2c8c7b71ea60fce8eb1d3badcea909b7f082e4e4a
4ad4e2a501b2fd3a4c7acd48b416706dc3fbda180cec831bacd558fc15cfa3e19347bb5297ac7a4b931b6e19f9b0
dfb0c07696727402c1c5215c0822776147a9a9c7c10bc04d23d6cee974fc37a32fd758cd09bff9f0b1cdd9e09734
aa0abe0dc9f3a74415c411ce2b07369445d6e4929a0132db60024cf260b17fb3401beb794a5a365a3be92677fb68
f60e091cb5cfc5d767290c4655d6922c2bd194671d5b
Bob	public	key:	0xbae8a1e6b00ee2df7996323f2d03dd650dcc19e5f2de8c77b4dcd0c611ab50e1bdd41c5d3b
8060a3047616b0a2e55aee0d8211b1d7b18e996e3cd02cf3580247ca42707f73a02266beb077f50b32940c2e09f0
8f1906f177bb1ce3fb6c8516d2f45091aba35a1afac904e694e4c844c3603fd7c8750c15ae349486160d4ce5fce0
c228c8edcd6599f0e680f6928ea7bbec0e9e3787f1476ce02692a22862df0213287dbc0864602c29314f3de68625
940d4dd1ac47d506015dbfee92cda106e5f13360b7d805973b03634726e2e0905bf61736d188cd3d90f667543547
496fa0d9b609320d84d09cde89ff5c1077e811664102f0c69cad41f620fb0ce9651708b8dc3caec2a78029d449e3
0976cbe943d39545a1a3979febbf3e890d2bb389180addcb5af1606baedc4ad2479fe840adae9a64df36de02b019
ff2b639dec3234d844656ef894273e07c272fbd1c650ea853bcdc3518118bf78dc9959a83633e43a04245d563c2e

DHKE	-	Examples

67

https://tools.ietf.org/html/rfc3526#section-3

948be7fa1ffa21e1bb203ae9339e5d9e7a1e0c8ba53cd3c67fc8ba63b1a266299eeb4f66810854b5780e6cb232d0
4350079ffc58914ec8d9b3345321c1d55ab0b87fbcd58c01d63d276497cdcfcf79615cac39af387322baeca6dd16
59f4646c487dcae7a84ca77d61fdbd99e81fab7111d6396eb387497a4f914dd45ca67a2e3c026ddd12f4446397af
8fe724228a9aad6e40fe6f788aae5999d60866934f81519b0f709818150b9f61a2a7f1e742423a6da12e05b30a6b
4f64f93d3eacda690ad390ec6358bcfc0de052fdff8c1ede1e3ea5dff104551771d8f3f4556ef8cb64df7b9a66d5
6e5964dc31ab28bdacd46d7a6ea994fbb6fe302b34ffa2cb095f5a4ee9bee18ae2f6ca29f269bb55995804f9925c
10a7e5e5ad3010734b01b192f047c433e04fd836e0ef77b3d6a05503e1692168c664058d5562bec8f53d3839a117
e170add42aa7cd941532cbc6eb6d5f411742cc436ceb679c8f827d538ccc3064dd41b91a77d5f3e68a44b63af94c
95bc93656cdc7a6e9776db02c9ada793f8a1e16315f39b664564aa676d9cc8a304aa5ab1849b49b905cc18bb798c
2ac8db40a3e0533224dba5b0084ff5855cf840123b29d8738a2df891f32fd883d984b37aed8a3ffb8c121e5a4e18
7dc8165d3aacf7698b01dc405590c14acd22e0e2a483d71a8d28d671f1b5f3c6ea06121b4c8adc6e261720b3dcd6
6748659cda7ddd8db727dfbf58047386b32a3a3bb7288c85d8712a984abb68d7f364d5498c8be4e3e15b87a8b679
4d9fd19e36d416344659a7c427bd1723a5d4574bb6ac9be7181045ec4c1c8d2cd6ca9c7d7187647a6637e684cb57
fd16ea635c18de9845487db591db7bebd3373b5b62f623080a2e007061b0e7a481ffa53e8e6801cfa562feb8b579
4b4a363d3163ebcc2f7e69d8f3334d6564a5dd1020
Now	exchange	the	public	keys	(e.g.	through	Internet)
Alice	shared	key:	0x964d9b37aa16599c0ce2442f887302555e91d4adb3ae42518a573d149bbdbf31d716e100
f7cab9b2c1aa1e02b6ecf770db0aa2a92b945a87c3c62764c0e44945322d358bd0b5ddc5517afbc88714c1d66bed
e6a209e69f66b23937bf3e2d38357a3365efe2f1624ff653adc76eccc98df66a67da7e93f4ec9ad5487412725f8a
b675f3a3234ac88c8585a6232385b69cfc0a02c520609e7df5fd19814e6d10c7bb0d040bc5b4f8927db9bf006c67
a797080f04aa740b6c1aa93c24c49e3bdf93b8911134fe07768b910b166516e560cbd12f3b20d293f83c6744e3bc
019ba5b46e0fb50e02d7e74da46c3870027c870e4fb81f23a073355069b01feb5b1c445a6231a59f5a67a84c7334
a9d635ddb33644c05a1f5f22d8e47d214d99d797660f3691bc55a616a0d2ef9c8f8845385ae808f9aef35b94e710
c58691be4819a7e1db320fc933dd8eded761bfee1a021b169c734a486f46154cebceff4e47b83099080bbbb21db2
c7042de10be5305901ec5f56056618ae063d1ac7e5351a0774c1ae898f64897cd41e553041f4cd3aa5786c8b998b
eb3ddabf6129df9207b52270a6ed48d612a1909634967d552b3216a2189904ed9f75ffa319a6d911e0a39cc0bf45
cd0b0b55a90060ff642b038d12fa97125e46a1473ec50a01cd90a24af5f55f3841514a3fbe304ed9501a03bb28be
d0ab23651d496748170f2f769fd997e6cd638b7267e7ee58e7f6a866f3e2ab94be5ddb675fa741d2784ea9025ab9
9dc639a6af90e32a1634dc9bcba5aef6e0ec6f1138cf9d170fafc6c2aee8f1c8af9a0cb1fd2b3932e7c35d87c3cd
e1034213fefe7495e927109cc0d0c7b4f1ee7588ae85da923c8d761241fcc98300d03a1d41a81fb716896fd2d0d4
c95a416651d64568ea0b164d97fe28d0a4645cebde9038d5c376accbaaaca7f140b4ee960d85b1811bc108a33f91
86521388f8addccf356bb8c03aa430f4193c1ffdd6af9e431847029b83d0379f23fd8a353fa35f1b13f5df53c243
bd4bab1df6c586612145c0743f29a0b6939d6bb4082feae75ef89f04fbacefba862ff8efc216241ffffffbf55b91
394a488a20c7bab19eaf2336f1785a70b2cc2f27be5054b10681e829c0958622d9e686c226e8160795190abb87da
710c46e032ca314b3f3699044642c8669c72c06596fbda1be5eb502e8d51fb0f4812750e465761f5266f2ecd1537
396d53c9218aa21aaeda3564241a99305f312d58fb053926e08f06c315d9877454006b6b6d8f4dd75c744d27c302
617d43577f5a03577fc7b70cecf01f53445bafd0fd6f4d90cb75fa5e1da591874c4e486e1c18a3097b0c4d00a8a6
9306551eb8b4138b085942a3f4dfdf3ae62e510eab6ead63473db09c373a7915ccaf8c0441a8c35e1cd21be057a5
a1e8203ca687c1bd89d2fe6b82f83716f3b14b7be192
Bob	shared	key:	0x964d9b37aa16599c0ce2442f887302555e91d4adb3ae42518a573d149bbdbf31d716e100f7
cab9b2c1aa1e02b6ecf770db0aa2a92b945a87c3c62764c0e44945322d358bd0b5ddc5517afbc88714c1d66bede6
a209e69f66b23937bf3e2d38357a3365efe2f1624ff653adc76eccc98df66a67da7e93f4ec9ad5487412725f8ab6
75f3a3234ac88c8585a6232385b69cfc0a02c520609e7df5fd19814e6d10c7bb0d040bc5b4f8927db9bf006c67a7
97080f04aa740b6c1aa93c24c49e3bdf93b8911134fe07768b910b166516e560cbd12f3b20d293f83c6744e3bc01
9ba5b46e0fb50e02d7e74da46c3870027c870e4fb81f23a073355069b01feb5b1c445a6231a59f5a67a84c7334a9
d635ddb33644c05a1f5f22d8e47d214d99d797660f3691bc55a616a0d2ef9c8f8845385ae808f9aef35b94e710c5
8691be4819a7e1db320fc933dd8eded761bfee1a021b169c734a486f46154cebceff4e47b83099080bbbb21db2c7
042de10be5305901ec5f56056618ae063d1ac7e5351a0774c1ae898f64897cd41e553041f4cd3aa5786c8b998beb
3ddabf6129df9207b52270a6ed48d612a1909634967d552b3216a2189904ed9f75ffa319a6d911e0a39cc0bf45cd
0b0b55a90060ff642b038d12fa97125e46a1473ec50a01cd90a24af5f55f3841514a3fbe304ed9501a03bb28bed0
ab23651d496748170f2f769fd997e6cd638b7267e7ee58e7f6a866f3e2ab94be5ddb675fa741d2784ea9025ab99d
c639a6af90e32a1634dc9bcba5aef6e0ec6f1138cf9d170fafc6c2aee8f1c8af9a0cb1fd2b3932e7c35d87c3cde1
034213fefe7495e927109cc0d0c7b4f1ee7588ae85da923c8d761241fcc98300d03a1d41a81fb716896fd2d0d4c9

DHKE	-	Examples

68

5a416651d64568ea0b164d97fe28d0a4645cebde9038d5c376accbaaaca7f140b4ee960d85b1811bc108a33f9186
521388f8addccf356bb8c03aa430f4193c1ffdd6af9e431847029b83d0379f23fd8a353fa35f1b13f5df53c243bd
4bab1df6c586612145c0743f29a0b6939d6bb4082feae75ef89f04fbacefba862ff8efc216241ffffffbf55b9139
4a488a20c7bab19eaf2336f1785a70b2cc2f27be5054b10681e829c0958622d9e686c226e8160795190abb87da71
0c46e032ca314b3f3699044642c8669c72c06596fbda1be5eb502e8d51fb0f4812750e465761f5266f2ecd153739
6d53c9218aa21aaeda3564241a99305f312d58fb053926e08f06c315d9877454006b6b6d8f4dd75c744d27c30261
7d43577f5a03577fc7b70cecf01f53445bafd0fd6f4d90cb75fa5e1da591874c4e486e1c18a3097b0c4d00a8a693
06551eb8b4138b085942a3f4dfdf3ae62e510eab6ead63473db09c373a7915ccaf8c0441a8c35e1cd21be057a5a1
e8203ca687c1bd89d2fe6b82f83716f3b14b7be192
Equal	shared	keys:	True

Enjoy	to	modify	and	experiment	with	the	above	code	to	learn	the	DHKE	protocol.

DHKE	-	Examples

69

Exercises:	DHKE	Key	Exchange
...

TODO

...

Exercises:	DHKE	Key	Exchange

70

Symmetric	and	Asymmetric	Encryption	-	Overview
In	cryptography	two	major	types	of	encryption	schemes	are	widely	used:	symmetric	encryption	(where	a	single
secret	key	is	used	to	encrypt	and	decrypt	data)	and	asymmetric	encryption	(where	a	public	key	cryptosystem	is
used	and	encryption	and	decryption	is	done	using	a	pair	of	public	and	corresponding	private	key).	Let's	explain
these	fundamental	crypto-concepts	in	details.

Symmetric	Encryption	-	Concepts	and	Algorithms
Symmetric	encryption	schemes	use	the	same	key	(or	password)	to	encrypt	data	and	decrypt	the	encrypted	data
back	to	its	original	form:

Secret	Keys
The	secret	key	used	to	cipher	(encrypt)	and	decipher	(decrypt)	data	is	typically	of	size	128,	192	or	256	bits	and	is
sometimes	referred	as	"shared	key",	because	both	sending	and	receiving	parties	should	know	it.

Most	applications	use	a	password-to-key-derivation	scheme	to	extract	a	secret	key	from	certain	password,
because	users	tend	to	remember	passwords	easier	than	binary	data.	Additionally,	message	authentication	is	often
incorporated	along	with	the	encryption	to	provide	integrity	and	authenticity	(this	encryption	approach	is	known	as
"authenticated	encryption").

How	does	a	private	key	look	like?	Let's	start	from	a	simple	example	of	256-bit	secret	key,	encoded	as	hex	string:

02c324648931b89e3e8a0fc42c96e8e3be2e42812986573a40d46563bceaf75110

In	many	blockchain	systems	keys	are	encoded	as	base58	or	base64	for	shorter	string	representation.

For	example,	the	above	key	looks	like	this	in	base58:

pbPRqYDxnKZfs8j4KKiqYmx6nzipAjTJf1oCD1WKgy99

The	same	key	looks	like	this	in	base64:

Encryption:	Symmetric	and	Asymmetric

71

https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Base58
https://en.wikipedia.org/wiki/Base64

AsMkZIkxuJ4+ig/ELJbo474uQoEphlc6QNRlY7zq91EQ

In	decimal	system,	the	above	key	is	the	following	integer	number:

319849484316084980661994213716306415989897600164422912728298459349458028548368

Modern	Symmetric	Encryption	Algorithms
Widely	used	in	modern	cryptography	symmetric	encryption	algorithms	(ciphers)	are:	AES	(AES-128,	AES-192,	AES-
256),	ChaCha20,	Twofish	and	IDEA.

We	shall	give	more	details	and	code	examples	using	these	algorithms	a	bit	later.

Symmetric	Encryption	-	Online	Demo
In	order	to	better	understand	the	idea	behind	the	symmetric	encryption,	you	can	play	with	some	online	symmetric
encryption	tool	to	encrypt	and	decrypt	a	sample	message	by	sample	secret	key	(or	password).	You	can	play	a	bit
with	this	site:	https://aesencryption.net.

It	demonstrates	how	we	can	encrypt	and	decrypt	messages,	using	the	AES	cipher	(with	some	default	settings)	and
certain	password-to-key-derivation	function.	In	the	above	example	if	we	encrypt	"secret	msg"	by	the	password
"p@ss",	we	will	get	the	base64-encoded	binary	data	"jVJwOBmH+qMqHdg22KwMyg=="	as	output.	After	decryption
with	the	same	secret	key	we	get	back	the	original	text	"secret	msg".

Note	that	the	above	encrypted	text	is	dependent	to	many	algorithm	parameters	and	settings,	so	if	you	encrypt	the
same	at	another	"AES	live	example"	web	site,	the	result	most	likely	will	be	different.

Public	Key	Cryptography	-	Concepts
Before	introducing	the	asymmetric	key	encryption	schemes	and	algorithms,	we	should	first	understand	the	concept
of	public	key	cryptography.

The	public	key	cryptography	uses	a	different	key	to	encrypt	and	decrypt	data	(or	to	sign	and	verify	messages).	Keys
always	come	as	public	+	private	key	pairs.

Asymmetric	Encryption	/	Decryption
Data	encrypted	by	a	public	key	is	decrypted	by	the	corresponding	private	key:

Encryption:	Symmetric	and	Asymmetric

72

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://legacy.gitbook.com/book/svetlin-nakov/practical-blockchain-for-developers-the-big-book/edit
https://en.wikipedia.org/wiki/Twofish
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
https://aesencryption.net
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Public-key_cryptography

The	encrypted	data,	obtained	as	result	of	encryption	is	called	"ciphertext".	The	ciphertext	is	a	binary	sequence,
unreadable	by	humans	and	typically	cannot	be	restored	without	the	decryption	key.

Public	key	encryption	can	work	also	in	the	opposite	scenario:	encrypt	data	by	a	private	key	and	decrypt	it	by	the
public	key.	Thus	someone	can	prove	that	he	is	owner	of	certain	private	key,	while	revealing	only	its	corresponding
public	key.

Typically,	public-key	cryptosystems	can	encrypt	messages	of	limited	length	only	and	are	slower	than	symmetric
ciphers.	For	encrypting	longer	messages	(e.g.	PDF	documents)	usually	a	public-key	encryption	scheme	is	used,
which	combines	symmetric	and	asymmetric	encryption	like	this:	a	random	symmetric	key		sk		is	generated,	the
message	is	symmetrically	encrypted	by		sk	,	then		sk		is	asymmetrically	encrypted	using	the	recipient's	public	key.

For	decryption,	first	the		sk		key	is	asymmetrically	decrypted	using	the	recipient's	private	key,	then	the	ciphertext	is

decrypted	symmetrically	using		sk	.	This	process	can	be	simplified	using	a	key	encapsulation	mechanism	(KEM)
which	encapsulates	a	random	symmetric	key	into	an	asymmetrically	encrypted	message.

Signatures:	Asymmetric	Signing	/	Verification
In	the	context	of	digital	signatures,	a	message	signed	by	a	private	key	(digital	signature)	is	later	verified	by	the
corresponding	public	key.

Digital	signatures	will	be	explained	in	more	details	later,	but	in	short:	a	message	can	be	signed	by	certain	private
key	and	the	obtained	signature	can	be	later	verified	by	the	corresponding	public	key.	A	signed	message	cannot	be
altered	after	signing.	A	message	signature	proves	that	certain	message	(e.g.	blockchain	transaction)	is	created	by	the
owner	of	certain	public	key.	Digital	signatures	provide	message	authentication,	message	integrity	and	non-
repudiation.

Encryption:	Symmetric	and	Asymmetric

73

https://en.wikipedia.org/wiki/Key_encapsulation
https://en.wikipedia.org/wiki/Digital_signature

In	blockchain,	transactions	are	typically	signed	by	the	owner	of	certain	blockchain	address	(which	corresponds	to
certain	public	key	and	has	corresponding	private	key).	So	a	signed	blockchain	transaction	holds	a	proof	of
authorship:	it	is	guaranteed	mathematically	that	the	signature	is	created	by	the	holder	of	certain	blockchain	address
and	the	transaction	was	not	modified	after	the	signing.	This	works	perfectly	for	the	scenario	of	digital	payments	and
digital	signing	of	documents	and	contracts.

Key	Pairs
The	public	key	cryptography	uses	a	pair	of	keys:	public	key	+	private	key.	These	keys	are	mathematically
connected	and	are	used	together	as	pair.

In	some	public	key	cryptosystems	(like	the	Elliptic-Curve	Cryptography	-	ECC),	the	public	key	can	be	calculated	from
the	private	key.	In	other	cryptosystems	(like	RSA),	the	public	key	and	the	private	key	are	generated	together	but
cannot	be	directly	calculated	from	each	other.

Usually,	a	public	/	private	key	pair	is	randomly	generated	in	a	secure	environment	(e.g.	in	a	hardware	wallet)	and
the	public	key	is	revealed,	while	the	private	key	is	securely	stored	in	a	crypto-wallet	and	is	protected	by	a	password	or
by	multi-factor	authentication.

Example	of	256-bit	public	key	and	its	corresponding	256-bit	private	key	(both	based	on	the	classical	elliptic	curves
cryptosystem,	used	in	Bitcoin	and	Ethereum):

privKey:	648fc1fa828c7f185d825c04a5b21af9e473b867eeee1acea4dbab938433e158
pubKey:	02c324648931b89e3e8a0fc42c96e8e3be2e42812986573a40d46563bceaf75110

Private	Keys
Message	encryption	and	signing	is	done	by	a	private	key.	The	private	keys	are	always	kept	secret	by	their	owner,
just	like	passwords.	In	the	blockchain	systems	the	private	keys	usually	stay	in	specific	software	or	hardware	apps	or
devices	called	"crypto	wallets",	which	store	securely	a	set	of	private	keys.

Example	of	256-bit	private	key:

648fc1fa828c7f185d825c04a5b21af9e473b867eeee1acea4dbab938433e158

Public	Keys
Message	decryption	and	signature	verification	is	done	by	the	public	key.	Public	keys	are	by	design	public
information	(not	a	secret).	It	is	mathematically	infeasible	to	calculate	the	private	key	from	its	corresponding	public	key.

In	blockchain	systems	public	keys	are	usually	published	as	parts	of	the	blockchain	transactions	to	help	identify	who
has	signed	each	transaction.

Example	of	256-bit	public	key:

02c324648931b89e3e8a0fc42c96e8e3be2e42812986573a40d46563bceaf75110

In	most	blockchain	systems	the	blockchain	address	is	derived	from	the	public	key,	so	if	you	have	someone's	public
key,	you	are	assumed	to	have	his	blockchain	address	as	well.

A	certain	public	key	can	be	connected	to	certain	person	or	organization	or	is	used	anonymously.	You	can	never
know	who	is	the	owner	of	the	private	key,	corresponding	to	certain	public	key,	unless	you	have	additional	proof,	e.g.	a
digital	certificate.

Public	Key	Cryptosystems
Public	key	cryptosystems	provide	mathematical	framework	and	algorithms	to	generate	public	+	private	key	pairs,	to
sign,	verify,	encrypt	and	decrypt	messages	and	exchange	keys,	in	a	cryptographically	secure	way.

Encryption:	Symmetric	and	Asymmetric

74

https://en.wikipedia.org/wiki/Public_key_certificate

Well-known	public-key	cryptosystems	are:	RSA,	ECC	and	ElGamal.

The	RSA	Cryptosystem
The	RSA	public-key	cryptosystem	is	based	on	the	math	of	modular	exponentiations	(numbers	raised	to	a	power
by	modulus)	and	some	additional	assumptions,	together	with	the	computational	difficulty	of	the	integer	factorization
problem.	We	shall	discuss	it	later	in	details,	along	with	examples.

The	ECC	Cryptosystem
The	elliptic-curve	cryptography	(ECC)	public-key	cryptosystem	is	based	on	the	math	of	the	on	the	algebraic
structure	of	the	elliptic	curves	over	finite	fields	and	the	difficulty	of	the	elliptic	curve	discrete	logarithm	problem
(ECDLP).	The	ECC	usually	comes	together	with	the	ECDSA	algorithm	(elliptic-curve	digital	signature	algorithm).	We
shall	discuss	ECC	and	ECDSA	in	details,	along	with	examples.

ECC	is	Recommended	in	the	General	Case
ECC	uses	smaller	keys,	ciphertexts	and	signatures	than	RSA	and	is	recommended	for	most	applications.	It	is
mathematically	proven	that	a	3072-bit	RSA	key	has	similar	cryptographic	strength	to	a	256-bit	ECC	key.	Key
generation	is	in	ECC	is	significantly	faster	than	with	RSA.

Due	to	the	above	reasons	most	blockchain	networks	(like	Bitcoin	and	Ethereum)	use	elliptic-curve-based
cryptography	(ECC)	to	secure	the	transactions.

Note	that	both	RSA	and	ECC	cryptosystems	are	not	quantum-safe,	which	means	that	if	someone	has	enough
powerful	quantum	computer,	he	will	be	able	to	derive	the	private	key	from	given	public	key	in	just	few	seconds.

Asymmetric	Encryption	-	Concepts	and	Algorithms
Asymmetric	encryption	schemes	use	a	pair	of	cryptographically	related	public	and	private	keys	to	encrypt	the
data	(by	the	public	key)	and	decrypt	the	encrypted	data	back	to	its	original	forms	(by	the	private	key).

Asymmetric	cryptography	deals	with	signing	messages,	verifying	signatures,	encrypting	and	decrypting
messages	using	a	public	/	private	key	cryptosystem.

Asymmetric	Encryption

Encryption:	Symmetric	and	Asymmetric

75

https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

Asymmetric	encryption	works	for	small	messages	only	(limited	from	the	public	/	private	key	length).	To	encrypt
larger	messages	key	encapsulation	mechanisms	or	other	techniques	can	be	used,	which	encrypt	asymmetrically	a
random	secret	key,	then	use	it	to	symmetrically	encrypt	the	larger	messages.	In	practice,	modern	asymmetric
encryption	schemes	involve	using	a	symmetric	encryption	algorithm	together	with	a	public-key	cryptosystem,	key
encapsulation	and	message	authentication.

Popular	asymmetric	encryption	schemes	are:	RSA-OAEP	(based	on	RSA	and	OAEP	padding),	RSAES-PKCS1-
v1_5	(based	on	RSA	and	PKCS#1	v1.5	padding),	DLIES	(based	on	discrete	logarithms	and	symmetric	encryption)
and	ECIES	(based	on	elliptic	curve	cryptography	and	symmetric	encryption).

Asymmetric	Crypto	Algorithms
Popular	asymmetric	algorithms	are:	RSA,	ECC,	ElGamal,	Diffie-Hellman,	DSA,	ECDSA	and	EdDSA.

We	shall	discuss	the	RSA	and	ECC	cryptosystems	in	details	later.	Now,	it	is	important	to	learn	that	symmetric	and
asymmetric	cryptosystems	work	differently	and	are	used	in	different	scenarios.

Asymmetric	Encryption	-	Online	Demo
In	order	to	better	understand	the	idea	behind	the	asymmetric	encryption,	you	can	play	with	some	online	public	key
encryption	tool	to	encrypt	/	decrypt	a	sample	message	by	sample	RSA	private	/	public	key.	You	can	play	a	bit	with	this
site:	http://travistidwell.com/jsencrypt/demo/.

In	the	above	online	demo	you	can	generate	RSA	public	/	private	key	pairs	and	encrypt	/	decrypt	text	messages.
Note	that	the	message	size	is	limited	by	the	key	length,	so	you	can't	encrypt	long	text.	Internally,	the	above	site	uses
the	RSAES-PKCS1-v1_5	public	key	encryption	scheme	as	specified	in	RFC3447.

Encryption:	Symmetric	and	Asymmetric

76

https://en.wikipedia.org/wiki/Key_encapsulation
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://tools.ietf.org/html/rfc3447#section-7.2
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
http://travistidwell.com/jsencrypt/demo/
https://tools.ietf.org/html/rfc3447

Symmetric	Key	Ciphers	-	Overview
Symmetric	key	ciphers	(like	AES,	ChaCha20,	RC6,	Twofish,	CAST	and	many	others)	use	the	same	key	(or
password)	to	encrypt	and	decrypt	data.	They	are	often	used	in	combination	with	other	algorithms	into	a	symmetric
encryption	schemes	(like	ChaCha20-Poly1305	and	AES-128-GCM	and	AES-256-CTR-HMAC-SHA256),	often	with
password	to	key	derivation	algorithms	(like	Scrypt	and	Argon2).	Symmetric	key	ciphers	are	quantum-resistant,
which	means	that	powerful	quantum	computers	will	not	be	able	to	break	their	security	(when	big	enough	key	lengths
are	used).

Symmetric	Encryption	/	Decryption
Symmetric	encryption	and	decryption	uses	a	secret	key	or	passphrase	(to	derive	the	key	from	it).	The	secret	key
used	to	encrypt	and	decrypt	the	data	is	usually	128	bits	or	256	bits	and	is	called	"encryption	key".	Sometimes	it	is
given	as	hex	or	base64-encoded	integer	number	or	is	derived	through	a	password-to-key	derivation	scheme.

When	the	input	data	is	encrypted,	it	is	transformed	to	encrypted	ciphertext	and	when	the	ciphertext	is	decrypted,	it	is
transformed	back	to	the	original	input	data.

Symmetric	Encryption	Uses	a	Set	of	Algorithms
It	is	important	to	know	as	a	concept	that	symmetric-key	encryption	algorithms	usually	do	not	work	standalone.	They
work	together	with	other	related	crypto	algorithms,	into	a	symmetric	encryption	scheme	/	symmetric	encryption
construction.

In	most	encryption	schemes	an	encryption	is	combined	with	password	to	key	derivation	algorithm	and	message
authentication	scheme	(see	authenticated	encryption).	Typically	a	symmetric	encryption	procedure	uses	a	sequence
of	steps,	involving	different	crypto	algorithms:

Password-to-key	derivation	algorithm	(like	Scrypt	or	Argon2):	to	allow	using	a	password	instead	of	a	key	and	to
make	password	cracking	hard	and	slow	to	be	performed.
Block	to	stream	cipher	transformation	algorithm	(block	cipher	mode	like	CBC	or	CTR)	+	message	padding
algorithm	like	PKCS7	(in	some	modes):	to	allow	encrypting	data	of	arbitrary	size	using	a	block	cipher	algorithm
(like	AES).
Block	cipher	algorithm	(like	AES):	to	securely	encrypt	data	blocks	of	fixed	length	using	a	secret	key.
Message	authentication	algorithm	(like	HMAC):	to	check	whether	after	decryption	the	obtained	result	matches
the	original	message	before	the	encryption.

Later	in	this	section	we	shall	give	more	details	and	examples	about	how	to	configure	and	use	symmetric	block
ciphers	(like	AES)	along	with	the	all	above	described	algorithms	to	securely	encrypt	and	decrypt	messages	of	arbitrary
size.

Symmetric	Key	Ciphers

77

https://en.wikipedia.org/wiki/Authenticated_encryption

Symmetric	Key	Ciphers

78

Block	Ciphers,	Stream	Ciphers,	Block	Modes	and
Padding
In	cryptography	block	ciphers	(like	AES)	are	designed	to	encrypt	a	block	of	data	of	fixed	size	(e.g.	128	bits).	The
size	of	the	input	block	is	usually	the	same	as	the	size	of	the	encrypted	output	block,	while	the	key	length	may	be
different.

Stream	ciphers	are	more	flexible:	they	are	designed	to	encrypt	data	of	arbitrary	size	(e.g.	a	PDF	document),	that
may	sometimes	come	as	a	stream	(sequence	of	bytes	or	frames,	e.g.	video	streaming).

Most	of	the	popular	symmetric	key	encryption	algorithms	are	block	ciphers,	but	cryptographers	have	proposed
several	schemes	to	transform	a	block	cipher	into	a	stream	cipher	and	encrypt	data	of	arbitrary	size.	These
schemes	are	known	as	"block	cipher	modes	of	operation".

Block	Cipher	Modes	(CBC,	CTR,	GCM,	...)
The	main	idea	behind	the	block	cipher	modes	(like	CBC,	CFB,	OFB,	CTR,	EAX,	CCM	and	GCM)	is	to	repeatedly
apply	a	cipher's	single-block	encryption	/	decryption	to	securely	encrypt	/	decrypt	amounts	of	data	larger	than	a	block.

Some	block	modes	(like	CBC)	require	the	input	to	be	split	into	blocks	and	the	final	block	to	be	padded	to	the	block
size	using	a	padding	algorithm	(e.g.	add	a	special	padding	character).	Other	block	modes	(like	CTR,	CFB,	OFB,
CCM,	EAX	and	GCM)	do	not	require	padding	at	all,	because	they	perform	XOR	between	portions	of	the	plaintext
and	the	internal	cipher's	state	at	each	step.

Basically,	encrypting	a	large	input	data	works	like	this:	the	encryption	algorithm	state	is	initialized,	then	the	first
portion	of	data	(e.g.	a	block	or	part	of	block)	is	encrypted,	then	the	encryption	state	is	transformed	(using	the
encryption	key	and	other	parameters),	then	the	next	portion	is	encrypted,	then	the	encryption	state	is	transformed
again	and	the	next	portion	is	then	encrypted	and	so	on,	until	all	the	input	data	is	processed.	The	decryption	works	in
a	very	similar	way.

This	is	what	developers	should	know	about	the	"block	cipher	modes	of	operation"	in	order	to	use	them	correctly.

Commonly	used	secure	block	modes	are	CBC	(Cipher	Block	Chaining),	CTR	(Counter)	and	GCM
(Galois/Counter	Mode),	which	require	a	random	initialization	vector	(IV)	at	the	start.
The	"Counter	(CTR)"	block	mode	is	good	choice	in	the	most	cases	because	of	strong	security,	arbitrary	input
data	length	(without	padding)	and	parallel	processing	capabilities.	It	does	not	provide	authentication	and	integrity,
just	encryption.
The	GCM	(Galois/Counter	Mode)	block	mode	takes	all	the	advantages	of	the	CTR	mode	and	adds	message
authentication	(produces	a	cryptographical	message	authentication	tag).	GCM	is	fast	and	efficient	way	to
implement	authenticated	encryption	in	symmetric	ciphers	and	it	is	highly	recommended	in	the	general	case.
In	CBC	mode	many	padding	algorithms	can	be	used	to	make	the	last	block	the	same	length	after	splitting	the
input	data	into	blocks.	Most	applications	use	the	PKCS7	padding	scheme	or	ANSI	X.923.
Well-known	insecure	block	mode	is	ECB	(Electronic	Codebook),	which	encrypts	equal	input	blocks	as	equal
output	blocks	(does	not	provide	cryptographic	diffusion).	Don't	use	it!	It	may	compromise	the	entire	encryption.

The	diagram	below	illustrates	how	portions	(blocks)	of	the	plaintext	are	encrypted	one	after	another	in	the	CTR	block
mode	of	operation	using	a	block	cipher:

Cipher	Block	Modes

79

https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_%28CTR%29
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_%28CBC%29
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Padding
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#PKCS#5_and_PKCS#7
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#ANSI_X.923
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_%28ECB%29
https://en.wikipedia.org/wiki/Confusion_and_diffusion

For	each	block	in	CTR	mode	a	new	unpredictable	keystream	block	is	generated	based	on	the	initial	vector	(IV,
sometimes	called	"nonce")	+	the	current	counter	(01,	02,	03,	...)	+	the	secret	encryption	key	and	the	input	block	is
merged	by	XOR	with	the	current	keystream	block	to	produce	the	output	block.	In	the	CTR	mode	the	final	portion	of
the	input	data	can	be	shorter	then	the	cipher	block	size,	so	padding	is	not	needed.	The	input	data	(before	encryption)
and	the	output	data	(after	encryption)	have	the	same	length.

The	CTR	and	GCM	encryption	modes	have	many	advantages:	they	are	secure	(no	significant	flaws	are	currently
known),	can	encrypt	data	of	arbitrary	length	without	padding,	can	encrypt	and	decrypt	the	blocks	in	parallel	(in	multi-
core	CPUs)	and	provide	random	(unordered)	access	to	the	encrypted	blocks,	so	they	are	suitable	for	encrypting
crypto-wallets,	documents	and	streaming	video	(where	users	can	seek	by	time).	GCM	provides	also	message
authentication	and	is	the	recommended	choice	for	cipher	block	mode	in	the	general	case.

Note	that	the	GCM,	CTR	and	other	block	modes	reveal	the	length	of	the	original	message.	The	length	of	the
plaintext	message	is	the	same	as	the	ciphertext	length.	If	you	want	to	avoid	revealing	the	original	plaintext	length,	you
can	add	some	random	bytes	to	the	plaintext	before	the	encryption	and	remove	them	after	decryption	(this	will	be	some
kind	of	padding).

Authenticated	Encryption
In	cryptography	the	concept	of	"authenticated	encryption"	(AE)	refers	to	a	scheme	to	encrypt	data	and
simultaneously	calculate	an	authentication	code	(authentication	tag	/	MAC),	used	to	provide	message	authenticity
and	integrity.	If	authenticated	encryption	scheme	is	used,	at	the	moment	of	decryption	it	will	be	known	if	the
decryption	is	successful	(i.e.	whether	the	decryption	key	/	password	was	correct	and	whether	the	encrypted	data
was	not	tampered).	Authenticated	encryption	(AE)	is	related	to	the	similar	concept	authenticated	encryption	with
associated	data	(AEAD),	which	a	more	secure	variant	of	AE.	AEAD	binds	associated	data	(AD)	to	the	ciphertext	and
to	the	context	where	it's	supposed	to	appear,	so	that	attempts	to	"cut-and-paste"	a	valid	ciphertext	into	a	different
context	can	be	detected	and	rejected.

Some	encryption	schemes	(like	ChaCha20-Poly1305	and	AES-GCM)	provide	integrated	authenticated	encryption
(AEAD),	while	others	(like	AES-CBC	and	AES-CTR)	need	authentication	to	be	added	additionally.

Cipher	Block	Modes

80

https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption#Authenticated_encryption_with_associated_data_%28AEAD%29

Popular	Symmetric	Encryption	Algorithms
Symmetric	key	encryption	algorithms	(like	AES)	are	designed	by	mathematicians	and	cryptographers	with	the	idea,
that	it	should	be	infeasible	to	decrypt	the	ciphertext	without	having	the	encryption	key.	This	is	true	for	the	modern
secure	symmetric	encryption	algorithms	(like	AES	and	ChaCha20)	and	may	be	disputable	or	false	for	others,
which	are	considered	insecure	symmetric	encryption	algorithms	(like	DES	and	RC4).

Some	popular	symmetric	encryption	algorithms	are:	AES,	ChaCha20,	CAST,	Twofish,	IDEA,	Serpent,	RC5,	RC6,
Camellia	and	ARIA.	All	these	algorithms	are	considered	secure	(when	configured	and	used	correctly).

AES	(Rijndael)
AES	(Advanced	Encryption	Standard,	also	known	as	Rijndael)	is	the	most	popular	and	widely	used	symmetric
encryption	algorithm	in	the	modern	IT	industry.	This	is	because	AES	is	proven	to	be	highly	secure,	fast	and	well
standardised	and	very	well	supported	on	virtually	all	platforms.	AES	is	128-bit	block	cipher	and	uses	128,	192	or
256-bit	secret	keys.	It	is	usually	used	in	a	block	mode	like	AES-CTR	or	AES-GCM	to	process	streaming	data.	In	the
most	block	modes	AES	require	also	a	random	128-bit	initial	vector	(nonce).

Rijndael	was	the	winner	in	the	AES	competition	organized	by	NIST	(1997-2000)	and	it	was	announced	officially	under
the	name	"AES"	(the	next	official	symmetric	block	cipher	after	DES).	In	2001	AES	was	adopted	as	official
recommendation	by	the	US	government	and	no	significant	weakness	or	attack	was	found	since	this	moment.
The	Rijndael	(AES)	algorithm	is	free	for	any	use:	public	or	private,	commercial	or	non-commercial.

Salsa20	/	ChaCha20
Salsa20,	along	with	its	improved	variants	ChaCha	(ChaCha8,	ChaCha12,	ChaCha20)	and	XSalsa20,	are	a	family	of
modern,	fast,	symmetric	stream	ciphers,	designed	by	the	distinguished	cryptographer	Daniel	Bernstein.	The
Salsa20	cipher	was	one	of	the	finalists	in	the	eSTREAM	contest	for	designing	of	new	symmetric	stream	ciphers
(2004-2008)	and	was	widely	adopted	afterwards,	together	with	the	related	BLAKE	hash	function.	Salsa20	and	its
variants	are	royalty-free,	not	patented.

The	Salsa20	cipher	takes	as	input	a	128-bit	or	256-bit	symmetric	secret	key	+	randomly	generated	64-bit	nonce
(initial	vector)	and	a	stream	of	data	of	unlimited	length	and	produces	as	output	an	encrypted	stream	of	data	with	the
same	length	as	the	input	stream.

Other	Popular	Symmetric	Ciphers
Other	modern	secure	symmetric	ciphers,	used	more	rarely	than	EAS	and	ChaCha20,	but	still	popular	in	the
software	developer	and	information	security	communities,	are	the	following:

Camellia	-	secure	symmetric	key	block	cipher	(block	size:	128	bits;	key	sizes:	128,	192	and	256	bits),	patented,
but	free	for	non-commercial	use
RC5	-	secure	symmetric-key	block	cipher	(key	size:	128	to	2040	bits;	block	size:	32,	64	or	128	bits;	rounds:	1	...
255),	insecure	with	short	keys	(56-bit	key	successfully	brute-forced),	was	patented,	now	royalty-free
RC6	-	secure	symmetric-key	block	cipher,	similar	to	RC5,	but	more	complicated	(key	size:	128	to	2040	bits;	block
size:	32,	64	or	128	bits;	rounds:	1	...	255),	was	patented	until	2017,	now	royalty-free
Serpent	-	secure	symmetric-key	block	cipher	(key	size:	128,	192	or	256	bits),	public	domain,	not	patented
Twofish	-	secure	symmetric-key	block	cipher	(key	sizes:	128,	192	or	256	bits),	royalty-free,	not	patented
IDEA	-	secure	symmetric-key	block	cipher	(key	size:	128	bits),	was	patented	until	2012,	now	royalty-free
CAST	(CAST-128	/	CAST5,	CAST-256	/	CAST6)	-	family	of	secure	symmetric-key	block	ciphers	(key	sizes:	40	...
256	bits),	royalty-free	basis	for	commercial	and	non-commercial	use
ARIA	-	secure	symmetric-key	block	cipher,	similar	to	AES	(key	size:	128,	192	or	256	bits),	official	standard	in
South	Korea,	free	for	public	use

Popular	Symmetric	Algorithms

81

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard_process
https://en.wikipedia.org/wiki/Salsa20
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
https://en.wikipedia.org/wiki/ESTREAM
https://en.wikipedia.org/wiki/Camellia_%28cipher%29
https://en.wikipedia.org/wiki/RC5
https://en.wikipedia.org/wiki/RC6
https://legacy.gitbook.com/book/svetlin-nakov/practical-blockchain-for-developers-the-big-book/edit
https://en.wikipedia.org/wiki/Twofish
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
https://en.wikipedia.org/wiki/CAST-256
https://en.wikipedia.org/wiki/CAST-128
https://en.wikipedia.org/wiki/CAST-128
https://en.wikipedia.org/wiki/ARIA_%28cipher%29

SM4	-	secure	symmetric-key	block	cipher,	similar	to	AES	(key	size:	128	bits),	official	standard	in	China,	free	for
public	use

Insecure	Symmetric	Algorithms
Some	other	symmetric	encryption	algorithms	were	popular	in	the	past,	but	are	now	considered	insecure	(broken
algorithms)	or	having	disputable	security	and	are	not	recommended	to	be	used	any	more:

DES	-	56-bit	key	size,	practically	broken,	can	be	brute-forced
3DES	(Triple	DES)	-	64-bit	cipher,	considered	broken
RC2	-	64-bit	cipher,	considered	broken
RC4	-	stream	cipher,	broken,	practical	attacks	demonstrated
Blowfish	-	old	64-bit	cipher,	broken,	practical	attacks	demonstrated
GOST	-	Russian	64-bit	block	cipher,	disputable	security,	considered	risky

Symmetric	Encryption	Schemes	/	Constructions
In	addition	to	the	above	mentioned	symmetric	key	ciphers,	cryptographers	have	proposed	many	symmetric
encryption	schemes	(constructions),	like	the	most	popular	authenticated	encryption	(AEAD)	schemes:

ChaCha20-Poly1305
The	ChaCha20	stream	cipher	with	integrated	Poly1305	authenticator	(integrated	authenticated	AEAD
encryption)
Requires	a	256-bit	key	and	random	96-bit	nonce
Extremely	high	performance
Implemented	by	the	most	modern	crypto-libraries

AES-256-GCM
AES-GCM	is	the	AES	(Rijndael)	block	cipher	in	GCM	block	mode	(integrated	authenticated	AEAD
encryption),	behaves	like	a	stream	cipher
Required	256-bit	key	and	random	128-bit	nonce	(initial	vector)
Implemented	by	the	most	modern	crypto	libraries

Most	applications	today	should	prefer	some	of	the	above	encryption	schemes	for	symmetric	encryption,	instead	of
constructing	their	own	encryption	scheme.	The	above	schemes	are	highly-secure,	proven,	well	tested	and	come	out-
of-the	box	from	the	crypto	libraries.

Note	that	ChaCha20-Poly1305	is	high-performance	cipher	(3	times	faster	than	AES-128-GCM	on	mobile	devices),	so
it	is	recommended	to	be	used	instead	of	AES-GCM.

Popular	Symmetric	Algorithms

82

https://en.wikipedia.org/wiki/SM4_%28cipher%29
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/RC2
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Blowfish_%28cipher%29
https://en.wikipedia.org/wiki/GOST_%28block_cipher%29
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc5288
https://www.imperialviolet.org/2014/02/27/tlssymmetriccrypto.html

The	AES	Symmetric-Key	Cipher	-	Concepts
The	Advanced	Encryption	Standard	(AES)	cipher,	also	known	as	"Rijndael"	is	a	popular,	secure,	widely	used
symmetric	key	block	cipher	algorithm,	used	officially	as	recommended	encryption	technology	standard	in	the	United
States.	AES	operates	using	block	size	of	128	bits	and	symmetric	keys	of	length	128,	160,	192,	224	and	256	bits.

AES	is	Secure	and	Very	Popular	Symmetric	Encryption
Algorithm
The	AES	symmetric	encryption	algorithm	is	considered	highly	secure	(when	configured	correctly)	and	no	significant
practical	attacks	are	known	for	AES	in	its	history.

AES	is	used	internally	by	the	most	Internet	Web	sites	today	for	serving		https://		content	as	part	of	the	TLS
(Transport	Layer	Security)	and	SSL	(Secure	Sockets	Layer)	standards	for	secure	host	to	host	communication	on	the
Web.

Due	to	its	wide	use	in	the	Internet	secure	communication,	modern	CPU	hardware	implements	AES	instructions	at
the	microprocessor	level	to	speed-up	the	AES	encryption	and	decryption.

AES	Algorithm	Parameters
The	AES	algorithm	can	operate	with	different	key	lengths,	but	the	block	size	is	always	128	bits.	For	most	application
128-bit	AES	encryption	(AES-128)	is	enough,	but	for	higher	encryption	level,	it	is	recommended	to	use	AES-256
(256-bit	key	length).

Like	any	other	block	ciphers,	AES	can	use	one	of	several	modes	of	operation	(CBC,	ECB,	CTR,	…)	to	allow
encryption	of	data	of	arbitrary	length.	The	recommended	mode	for	the	general	case	and	for	encrypting	blockchain
wallets	is	"CTR".

Most	modes	of	operation	require	an	initial	vector	(IV).	When	using	a	counter	mode	(CTR),	i.e.	AES-128-CTR	(128-
bit)	or	AES-256-CTR	(256-bit)	for	example,	first	a	non-secret	random	salt	(IV)	should	be	generated	and	saved	along
with	the	encrypted	ciphertext	output.	The	size	of	the	IV	is	always	the	same	as	the	size	of	the	block,	i.e.	128	bits	(16
bytes).

The	AES	encryption,	combined	with	CTR	block	mode	and	random	IV	causes	the	encryption	algorithm	to	produce
different	encrypted	ciphertext	each	time,	when	the	same	input	data	is	encrypted.	This	ensures	that	nobody	can
construct	a	dictionary	to	reverse	back	the	encrypted	ciphertext.

AES	encryption	in	CBC	mode	uses	a	padding	algorithm	(like	PKCS7	or	ANSI	X.923)	to	help	splitting	the	input	data
into	blocks	of	fixed	block-size	(e.g.	128	bits)	before	passing	the	blocks	to	the	AES-CBC	algorithm.	Most	developers
use	the	CTR	mode	of	operation	for	AES,	so	they	don't	need	padding.

Without	using	a	block	mode,	the	ciphertext,	generated	by	the	AES	algorithm	is	exactly	128	bits	(16	bytes),	just	like
the	block	size.	The	input	data	is	also	exactly	128	bits.

The	ciphertext,	generated	by	the	AES-CTR	algorithm	(AES	in	CTR	cipher	block	mode)	has	the	same	size	like	the
size	of	the	input	data.	No	padding	is	required.

The	ciphertext,	generated	by	the	AES-CBC	algorithm	(AES	in	CBC	ciphertext	mode),	has	size	of	128	bits	(16	bytes)
or	multiple	of	128	bits.	The	input	data	should	be	padded	before	encryption	and	unpadded	after	decryption.

The	AES	algorithm	often	is	used	along	with	a	password-to-key	derivation	function,	e.g.		Scrypt(passwd)	->	key	
or		PBKDF2(passwd)	->	key	.

Integrated	Message	Authentication	Code	(MAC)

The	AES	Cipher	-	Concepts

83

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

The	AES	algorithm	may	use	MAC	(message	authentication	code)	to	check	the	password	validity,	e.g.		HMAC(text,
key)	.

The	MAC	code	is	typically	integrated	(see	the	concept	of	integrated	encryption)	in	the	algorithm's	output.	It	is
calculated	from	the	input	message,	together	with	the	encryption	key.	From	the	calculated	MAC,	it	is	impossible	to
reveal	the	input	message	or	the	key,	so	the	MAC	itself	is	not	a	secret.	Some	block	cipher	modes	(like	AES-GCM)
integrate	message	authentication	in	the	obtained	ciphertext	as	part	of	their	work,	so	you	don't	need	to	add	MAC
explicitly.

Typically	MAC	is	calculated	and	used	like	this:

Before	the	encryption,	the	MAC	is	calculated	as:		mac	=	HMAC-SHA256(input_msg,	key)	.
The	input	data	is	encrypted	and	the	ciphertext	is	stored	along	with	the	random	salt	(IV)	and	the	MAC.
After	decryption,	the	MAC	is	calculated	again	and	is	compared	with	the	MAC	stored	along	with	the	encrypted
message.

If	the	MAC	is	the	same,	the	decryption	is	successful:	correct	ciphertext	+	decryption	key	+	algorithms
settings	(IV,	block	mode,	padding	algorithm).
If	the	MAC	is	different,	the	decryption	is	not	successful:	incorrect	key	/	password	or	broken	ciphertext,
incorrect	MAC	or	different	algorithms	settings	(IV,	block	mode,	padding,	etc.)

The	MAC	can	be	calculated	and	verified	using	several	approaches	to	integrated	encryption:	Encrypt-then-MAC,
Encrypt-and-MAC,	MAC-then-Encrypt.

The	AES	Encryption	Process
The	entire	AES	encryption	process	(password-based	authenticated	encryption)	looks	like	this:

1.	 Algorithm	parameters	are	selected	(e.g.	AES,	128-bit,	CTR	mode	+	Scrypt	+	Scrypt	parameters	+	MAC
algorithm).	These	parameters	can	be	hard-coded	in	the	AES	algorithm	implementation	source	code	or	can	be
specified	as	input	for	the	AES	encrypt	and	decrypt.	Always	use	the	same	parameters	for	encryption	and
decryption.

2.	 The	encryption	key	is	derived	from	the	encryption	password	using	a	key-derivation	function	(KDF),	e.g.	Scrypt
(with	certain	parameters):

3.	 The	AES	encryption	scheme	takes	as	input	the	input	msg	+	the	encryption	key.	It	produces	as	output	the
ciphertext	+	the	randomly	generated	IV	(128-bit	salt)	+	the	MAC	code:

In	case	of	authenticated	encryption	(e.g.	AES-GCM),	the	MAC	is	already	calculated	automatically	during
the	AES	encryption	process.

If	the	encryption	scheme	is	not	authenticated	encryption	(e.g.	AER-CTR),	the	MAC	code	is	not	calculated
automatically	by	the	AES	encryption	process	and	should	be	calculated	additionally.	The	MAC	code	can	be
calculated	from	the	input	msg,	using	the	encryption	key	(or	some	transformation	of	it)	and	some	MAC
function	(like	HMAC-SHA-256):

The	AES	Cipher	-	Concepts

84

https://en.wikipedia.org/wiki/Authenticated_encryption#Approaches_to_authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption#Approaches_to_authenticated_encryption

The	ciphertext	is	calculated	through	the	AES	encryption	algorithm.	It	first	generates	a	random	salt	(IV)
and	uses	it	to	transform	the	input	msg	using	the	encryption	key,	through	the	AES	cipher	encryption	logic:

4.	 Finally,	the	encrypted	output	is	generated.	It	holds	the	ciphertext	+	IV	+	MAC.	Optionally,	it	holds	also	the
algorithm	settings.

The	AES	Decryption	Process
The	opposite	AES	decryption	process	(password-based	authenticated	decryption)	looks	like	this:

1.	 Initialize	the	same	AES	algorithm	parameters	for	the	decryption	process,	exactly	like	the	ones	used	during	the
encryption.

2.	 Use	the	decryption	key	and	the	IV	from	the	encrypted	message	to	decrypt	the	ciphertext	using	the	AES
algorithm	decryption	logic.	The	output	is	the	original	message	(the	input	msg,	which	was	previously	passed
through	AES	encryption):

In	case	of	authenticated	encryption	(like	AES-GCM),	the	integrated	MAC	code	is	verified	during	the
decryption	process.

In	case	of	unauthenticated	encryption	(like	AES-CTR),	the	MAC	code	should	be	calculated	and	verified
additionally,	as	it	is	described	in	the	next	few	step.

3.	 Calculate	HMAC	of	the	original	message	(obtained	during	the	decryption):

4.	 Compare	the	encryption	MAC	(the	MAC	of	the	input	message,	before	the	encryption)	with	the	decryption	MAC
(the	MAC	of	the	original	message,	recovered	by	the	decryption):

If	the	MAC	codes	are	the	same,	the	decryption	was	correct	and	the	original	message	is	obtained.

If	the	MAC	codes	are	different,	the	decryption	was	failed	and	the	original	message	is	not	the	obtained	one.
This	may	happen	due	to	many	reasons,	most	likely	"wrong	password".	Other	reasons:	incorrect	ciphertext,
incorrect	IV,	incorrect	algorithm	settings,	incorrect	KDF	function	or	KDF	parameters,	etc.

Now	it	is	time	to	illustrate	the	above	described	concepts	through	working	source	code	to	AES	encrypt	/	decrypt	an
input	msg	by	given	password.

The	AES	Cipher	-	Concepts

85

The	AES	Cipher	-	Concepts

86

AES	Encryption	/	Decryption	-	Examples	in	Python
Let's	illustrate	the	AES	encryption	and	AES	decryption	concepts	through	working	source	code	in	Python.	The
example	below	will	illustrate	a	password-based	AES	encryption,	without	message	authentication	(unauthenticated
encryption).

Install	Python	Libraries	pyaes	and	pbkdf2
First,	install	the	Python	library		pyaes		that	implements	the	AES	symmetric	key	encryption	algorithm:

pip	install	pyaes

Next,	install	the	Python	library		pbkdf2		that	implements	the	PBKDF2	password-to-key	derivation	algorithm:

pip	install	pbkdf2

Now,	let's	play	with	a	simple	AES	encrypt	/	decrypt	example.

Password	to	Key	Derivation
First	start	by	key	derivation:	from	password	to	256-bit	encryption	key.

import	pyaes,	pbkdf2,	binascii,	os,	secrets

#	Derive	a	256-bit	AES	encryption	key	from	the	password
password	=	"s3cr3t*c0d3"
passwordSalt	=	os.urandom(16)
key	=	pbkdf2.PBKDF2(password,	passwordSalt).read(32)
print('AES	encryption	key:',	binascii.hexlify(key))

The	above	code	derives	a	256-bit	key	using	the	PBKDF2	key	derivation	algorithm	from	the	password
	s3cr3t*c0d3	.	It	uses	a	random	password	derivation	salt	(128-bit).	This	salt	should	be	stored	in	the	output,	together
with	the	ciphertext,	because	without	it	the	decryption	key	cannot	be	derived	again	and	the	decryption	will	be
impossible.

The	output	from	the	above	code	may	look	like	this:

AES	encryption	key:	b'7625e224dc0f0ec91ad28c1ee67b1eb96d1a5459533c5c950f44aae1e32f2da3'

The	derived	key	consists	of	64	hex	digits	(32	bytes),	which	represents	a	256-bit	integer	number.	It	will	be	different	if
you	run	the	above	code	several	times,	because	a	random	salt	is	used	every	time.	If	you	use	the	same	salt,	the	same
key	will	be	derived.

AES	Encryption	(CTR	Block	Mode)
Next,	generate	a	random	256-bit	initial	vector	(IV)	for	the	AES	CTR	block	mode	and	perform	the	AES-256-CTR
encryption:

#	Encrypt	the	plaintext	with	the	given	key:
#			ciphertext	=	AES-256-CTR-Encrypt(plaintext,	key,	iv)
iv	=	secrets.randbits(256)
plaintext	=	"Text	for	encryption"
aes	=	pyaes.AESModeOfOperationCTR(key,	pyaes.Counter(iv))
ciphertext	=	aes.encrypt(plaintext)

AES	Encrypt	/	Decrypt	-	Examples

87

print('Encrypted:',	binascii.hexlify(ciphertext))

The	output	from	the	above	code	may	look	like	this:

Encrypted:	b'53022cf12c5959ddf3e733128930dd3d52e3ea'

The	ciphertext	consists	of	38	hex	digits	(19	bytes,	152	bits).	This	is	the	size	of	the	input	data,	the	message		Text
for	encryption	.

Note	that	after	AES-CTR	encryption	the	initial	vector	(IV)	should	be	stored	along	with	the	ciphertext,	because	without
it,	the	decryption	will	be	impossible.	The	IV	should	be	randomly	generated	for	each	AES	encryption	(not	hard-coded)
for	higher	security.

Note	also	that	if	you	encrypt	the	same	plaintext	with	the	same	encryption	key	several	times,	the	output	will	be
different	every	time,	due	to	the	randomness	in	the	IV.	This	is	intended	behavior	and	it	increases	the	security,	e.g.
resistance	to	dictionary	attacks.

AES	Decryption	(CTR	Block	Mode)
Now	let's	see	how	to	decrypt	a	ciphertext	using	the	AES-CTR-256	algorithm.	The	input	consists	of	ciphertext	+
encryption	key	+	the	IV	for	the	CTR	counter.	The	output	is	the	original	plaintext.	The	code	is	pretty	simple:

#	Decrypt	the	ciphertext	with	the	given	key:
#			plaintext	=	AES-256-CTR-Decrypt(ciphertext,	key,	iv)
aes	=	pyaes.AESModeOfOperationCTR(key,	pyaes.Counter(iv))
decrypted	=	aes.decrypt(ciphertext)
print('Decrypted:',	decrypted)

The	output	of	the	above	should	be	like	this:

Decrypted:	b'Text	for	encryption'

Note	that	the		aes		object	should	be	initialized	again,	because	the	CTR	cipher	block	mode	algorithm	keeps	an
internal	state	that	changes	over	the	time.

Note	also	that	the	above	code	cannot	detect	wrong	key,	wrong	ciphertext	or	wrong	IV.	If	you	use	an	incorrect	key
to	decrypt	the	ciphertext,	you	will	get	a	wrong	unreadable	text.	This	is	clearly	visible	by	the	code	below:

key	=	os.urandom(32)			#	random	decryption	key
aes	=	pyaes.AESModeOfOperationCTR(key,	pyaes.Counter(iv))
print('Wrongly	decrypted:',	aes.decrypt(ciphertext))

The	output	of	the	above	incorrect	decryption	attempt	might	be	like	this:

Wrongly	decrypted:	b'\xe6!\n\x9a\xa9\x15\x12\xd9\xcb\x9cS\x86\xcc\xe1\x1d\x1a\x8blw'

Now	it	is	your	time	to	play	with	the	above	code	example.	Try	to	to	encrypt	and	decrypt	different	messages,	to
change	the	input	message,	the	key	size,	to	hard-code	the	IV,	the	key	and	other	parameters,	switch	to	CBC	mode,	and
see	how	the	results	change.	Enjoy	learning	by	playing.

AES	Encrypt	/	Decrypt	-	Examples

88

AES	Encrypt	/	Decrypt	-	Examples

89

Ethereum	UTC	/	JSON	Wallet	Encryption	(AES	+
Scrypt	+	MAC)
To	illustrate	the	application	of	the	AES	cipher	in	action,	we	shall	look	into	one	real-world	example:	the	standard
encrypted	wallet	file	format	for	the	Ethereum	blockchain.	We	shall	see	how	AES-128-CTR	cipher	is	combined	with
Scrypt	and	MAC	to	securely	implement	authenticated	symmetric	key	encryption	by	text-based	password.

Ethereum	UTC	/	JSON	Wallets
In	public	blockchain	networks	(like	Bitcoin	and	Ethereum)	the	private	keys	of	the	blockchain	asset	holders	are	stored
in	special	keystores,	called	crypto	wallets.	Typically	these	crypto-wallets	are	files	on	the	local	hard	disk,	encrypted	by
a	password.

In	the	Ethereum	blockchain	crypto	wallets	are	internally	stored	in	a	special	encrypted	format	known	as	"UTC	/
JSON	Wallet	(Keystore	File)"	or	"Web3	Secret	Storage	Definition".	This	is	the	wallet	file	format,	used	in	geth	and
Parity	(the	leading	protocol	implementations	for	Ethereum),	in	MyEtherWallet	(popular	online	client-side	Ethereum
wallet),	in	MetaMask	(widely	used	in-browser	Ethereum	wallet),	in	the	ethers.js	and	Nethereum	libraries	and	in	many
other	Ethereum-related	technologies	and	tools.

The	Ethereum	UTC	/	JSON	keystores	keep	the	encrypted	private	key	(or	wallet	seed	words)	as	JSON	text
document,	specifying	the	encrypted	data,	encryption	algorithms	and	their	parameters.

UTC	/	JSON	Keystore	-	Example
Let's	look	into	a	sample	UTC	/	JSON	keystore	file,	which	holds	a	password-protected	256-bit	private	key.

{
		"version":	3,
		"id":	"07a9f767-93c5-4842-9afd-b3b083659f04",
		"address":	"aef8cad64d29fcc4ed07629b9e896ebc3160a8d0",
		"Crypto":	{
				"ciphertext":	"99d0e66c67941a08690e48222a58843ef2481e110969325db7ff5284cd3d3093",
				"cipherparams":	{	"iv":	"7d7fabf8dee2e77f0d7e3ff3b965fc23"	},
				"cipher":	"aes-128-ctr",
				"kdf":	"scrypt",
				"kdfparams":	{
						"dklen":	32,
						"salt":	"85ad073989d461c72358ccaea3551f7ecb8e672503cb05c2ee80cfb6b922f4d4",
						"n":	8192,
						"r":	8,
						"p":	1
						},
				"mac":	"06dcf1cc4bffe1616fafe94a2a7087fd79df444756bb17c93af588c3ab02a913"
		}
}

The	above	JSON	document	is	a	classical	example	of	authenticated	symmetric	encryption.

What	Is	Inside	the	UTC	/	JSON	File?
Typically	a	UTC	/	JSON	keystore	holds	the	following	data:

Key-derivation	function	(KDF)	used	to	transform	the	text-based	wallet	encryption	password	into	an	AES
symmetric	key,	used	to	encrypt	the	wallet	contents.	Usually	the	KDF	function	is	"scrypt".

Ethereum	Wallet	Encryption

90

https://theethereum.wiki/w/index.php/Accounts,_Addresses,_Public_And_Private_Keys,_And_Tokens#UTC_JSON_Keystore_File
https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition
https://geth.ethereum.org
https://www.parity.io/ethereum
https://www.myetherwallet.com
https://metamask.io
https://github.com/ethers-io/ethers.js/
https://github.com/Nethereum/Nethereum

The	KDF	parameters	-	the	parameters	used	in	the	KDF	function	to	derive	the	password	(e.g.	iterations
count,	salt,	etc.)

The	ciphertext	-	the	encrypted	wallet	content	(typically	holds	an	encrypted	256-bit	private	key).
Symmetric	cipher	algorithm	+	its	parameters,	e.g.	AES-128-CTR	+	initial	vector	(IV).
MAC	-	message	authentication	code	used	(MAC)	to	check	the	message	integrity	after	it	is	decrypted	(to	know
whether	the	wallet	decryption	password	was	correct	or	not).

Ethereum	calculates	the	MAC	by	calculating	keccak-256	hash	of	the	concatenations	of	the	second-leftmost
16	bytes	of	the	derived	key	together	with	the	full	ciphertext.

Additional	metadata:	wallet	format	version,	wallet	unique	id	(uuid)	and	the	blockchain	address,	controlled	by
this	wallet.

By	default	the	key-derivation	function	is	scrypt	and	uses	weak	scrypt	parameters	(n=8192	cost	factor,	r=8	block	size,
p=1	parallelization),	so	it	is	recommended	to	use	long	and	complex	passwords	to	avoid	brute-force	wallet	decryption
attacks.

MyEtherWallet:	Play	with	UTC	/	JSON	Keystore	Files
To	learn	better	the	file	format	behind	the	Ethereum	UTC	/	JSON	keystore	files,	play	with	MyEtherWallet.

Follow	the	steps	below	to	create	a	new	random	Ethereum	crypto	wallet	and	view	its	encrypted	JSON	content:

Open	the	MyEtherWallet	web	site:	https://myetherwallet.com.
Choose	a	password	and	create	a	new	wallet.
Download	the	Keystore	File	(UTC	/	JSON).
See	what's	inside	the	downloaded	file.
Try	to	make	some	changes,	try	to	decrypt	it	with	wrong	password	and	other	changes.
Enjoy	learning	by	playing.

Ethereum	Wallet	Encryption

91

https://www.myetherwallet.com

Ethereum	Wallet	Encryption

92

Exercise:	Symmetric	Key	Encryption	/	Decryption
(using	AES	+	Scrypt	+	HMAC)
In	this	exercise	we	shall	encrypt	and	decrypt	a	text	message	using	a	symmetric	cipher	AES-CBC-256,	combined
with	Scrypt	password-to-key	derivation	and	HMAC	message	authentication	code.	In	fact	we	shall	implement	a
password-based	symmetric	authenticated	encryption	scheme.

Symmetric	Encryption	(AES	+	Scrypt	+	HMAC)
Write	a	program	to	encrypt	a	text	message	using	given	password.	Use	the	following	steps:

Derive	a	512-bit	key	from	the	password	using	Scrypt	(n=16384,	r=16,	p=1)	with	random	salt	(128	bits).

Split	the	derived	key	into	two	256-bit	sub-keys:	encryption	key	and	HMAC	key.
Pad	the	input	message	using	the	PKCS7	algorithm	to	length,	which	is	multiple	of	16	bytes	(128	bits).

Encrypt	the	padded	message	using	AES-256-CBC	using	the	encryption	key.	The	obtained	result	is	the
ciphertext.	Its	length	should	be	a	multiple	of	16	bytes	(128	bits),	which	is	the	block	size	in	the	AES	cipher.

Use	a	randomly	generated	128-bit	initial	vector	(IV).
Calculate	message	authentication	code	(MAC)	using	HMAC-SHA256(hmac_key,	ciphertext).

Input:	message	+	password	(space	separated).

Output:	JSON	document	(see	the	example	below),	holding	the	following	assets:

The	Scrypt	randomly-generated	salt	(in	hex	format).

The	randomly-generated	iv	(in	hex	format),	used	for	the	AES	cipher.

The	encrypted	message	ciphertext	(in	hex	format)	from	the	AES	cipher.

The	message	authentication	code	-	mac	(in	hex	format).

Write	your	code	in	programming	language	of	choice.

Input Output

p@sSw0rd
~123	Secret
Msg

{"salt":	"9757a3a22a9937ca0e0f2b5f2a4a11b4",	"iv":	"2ce8c035d50f7a6ee6509c14fe11725a",
"ciphertext":	"bb435d8ad048c240b50f0e4a191605d9",	"mac":	"02cf870ad1f7453c339dac06e
dbd648c455f5e8abbf6f2716cbc2d164b644200"}

stupid!pas
s	longer-me
ssage-for-e
ncryption

{"salt":	"b243f0ac10ef358ff0d37f1e30ef19c2",	"iv":	"fdeff97e89705289d99751f079e2a308",	"ci
phertext":	"ea76bc60799c5824627a8c1276b48ab70e24011b6654f8ffb019a4f6876485af",	"ma
c":	"34085e1a47ae53e154b7466336efee386c2f1ed61a0105183ef016af794da58f"}

Note	that	the	above	input	will	be	different	in	your	case,	bеcause	of	the	randomly	generated	salt	and	iv.

Symmetric	Decryption	(AES	+	Scrypt	+	HMAC)
Write	a	program	to	decrypt	an	encrypted	message	(coming	as	input)	using	given	password.

Derive	a	512-bit	key	from	the	password	using	Scrypt	(n=16384,	r=16,	p=1)	with	the	salt	(from	the	JSON).

Split	the	derived	key	into	two	256-bit	sub-keys:	encryption	key	and	HMAC	key.
Calculate	message	authentication	code	(MAC)	using	HMAC-SHA256(hmac_key,	ciphertext).

Compare	the	MAC	with	the	MAC	in	the	JSON	document.
Same	MAC	means	"correct	password	/	successful	decryption".

Exercises:	AES	Encrypt	/	Decrypt

93

Different	MAC	means	"wrong	password	/	incorrect	input	data".
Decrypt	the	ciphertext	from	the	input	using	AES-256-CBC	using	the	encryption	key	and	the	IV	from	the	JSON.

Unpad	the	decrypted	message	using	the	PKCS7	algorithm	from	length,	which	is	multiple	of	16	bytes	(128	bits)	to
its	original	length	(usually	smaller).

Input:	password	+	JSON	(space	separated).	The	JSON	is	in	exactly	the	same	format,	like	in	the	output	from	the
previous	exercise	(it	holds	salt,	iv,	ciphertext	and	mac,	all	as	hex	numbers)

Output:		Decrypted:		+	the	original	decrypted	message	or	the	text		Decryption	failed!		in	case	or	wrong
password	or	other	problem.

Write	your	code	in	programming	language	of	choice.

Input Output

p@sSw0rd~123	{"salt":	"9757a3a22a9937ca0e0f2b5f2a4a11b4",	"iv":	"2ce8c035d50f7a6ee6509c1
4fe11725a",	"ciphertext":	"bb435d8ad048c240b50f0e4a191605d9",	"mac":	"02cf870ad1f7453c339
dac06edbd648c455f5e8abbf6f2716cbc2d164b644200"}

Decryp
ted:	Se
cretMs
g

wrong!pass	{"salt":	"9757a3a22a9937ca0e0f2b5f2a4a11b4",	"iv":	"2ce8c035d50f7a6ee6509c14fe
11725a",	"ciphertext":	"bb435d8ad048c240b50f0e4a191605d9",	"mac":	"02cf870ad1f7453c339dac
06edbd648c455f5e8abbf6f2716cbc2d164b644200"}

Decryp
tion	fail
ed!

Exercises:	AES	Encrypt	/	Decrypt

94

ChaCha20-Poly1305
[TODO]

The	AEAD	construction	ChaCha20-Poly1305	combines	the	ChaCha20	stream	cipher	paired	with	the	Poly1305
authenticator...

Chacha20-Poly1305	-	Example	in	Python
https://github.com/ph4r05/py-chacha20poly1305

[TODO]

ChaCha20-Poly1305

95

https://github.com/ph4r05/py-chacha20poly1305

Exercise:	Symmetric	Key	Encryption	/	Decryption
(ChaCha20-Poly1305)
[TODO]

Exercises:	ChaCha20-Poly1305

96

Asymmetric	Key	Ciphers	and	Public-Key
Cryptography	-	Overview
Asymmetric	key	cryptosystems	/	public-key	cryptosystems	(like	RSA,	elliptic	curve	cryptography	(ECC),
Diffie-Hellman,	ElGamal,	McEliece,	NTRU	and	others)	use	a	pair	of	mathematically	linked	keys:	public	key
(encryption	key)	and	private	key	(decryption	key).

The	asymmetric	key	cryptosystems	provide	key-pair	generation	(private	+	public	key),	encryption	algorithms
(asymmetric	key	ciphers	and	encryption	schemes	like	RSA-OAEP	and	ECIES),	digital	signature	algorithms	(like
DSA,	ECDSA	and	EdDSA)	and	key	exchange	algorithms	(like	DHKE	and	ECDH).

A	message	encrypted	by	the	public	key	is	later	decrypted	by	the	private	key.	A	message	signed	by	the	private
key	is	later	verified	by	the	public	key.	The	public	key	is	typically	shared	with	everyone,	while	the	private	key	is	kept
secret.	Calculating	the	private	key	from	its	corresponding	public	key	is	by	design	computationally	infeasible.

Public-Key	Cryptosystems
Well-known	public-key	cryptosystems	are:	RSA,	ECC,	ElGamal,	DHKE,	ECDH,	DSA,	ECDSA,	EdDSA,	Schnorr
signatures.	Different	public	key	cryptosystems	may	provide	one	or	more	of	the	following	capabilities:

Key-pair	generation:	generate	random	pairs	of	private	key	+	corresponding	public	key.
Encryption	/	decryption:	encrypt	date	by	public	key	and	decrypt	data	by	private	key	(often	using	a	hybrid
encryption	scheme).
Digital	signatures	(message	authentication):	sign	messages	by	private	key	and	verify	signatures	by	public	key.
Key-exchange	algorithms:	securely	exchange	cryptographic	key	between	two	parties	over	insecure	channel.

The	most	important	and	most	used	public-key	cryptosystems	are	RSA	and	ECC.	Elliptic	curve	cryptography	(ECC)	is
the	recommended	and	most	preferable	modern	public-key	cryptosystem,	especially	with	the	modern	highly	optimized
and	secure	curves	(like	Curve25519	and	Curve448),	because	of	smaller	keys,	shorter	signatures	and	better
performance.

The	RSA	public-key	cryptosystem	is	based	on	the	mathematical	concept	of	modular	exponentiation	(numbers
raised	to	a	power	by	modulus),	along	with	some	mathematical	constructions	and	the	integer	factorization	problem
(which	is	considered	to	be	computationally	infeasible	for	large	enough	keys).

The	elliptic-curve	cryptography	(ECC)	cryptosystem	is	based	on	the	math	of	the	on	the	algebraic	structure	of	the
elliptic	curves	over	finite	fields	and	the	elliptic	curve	discrete	logarithm	problem	(ECDLP),	which	is	considered	to
be	computationally	infeasible	for	large	keys.	ECC	comes	together	with	the	ECDSA	algorithm	(elliptic-curve	digital
signature	algorithm).	ECC	uses	smaller	keys	and	signatures	than	RSA	and	is	prefered	in	most	modern	apps.	We	shall
discuss	ECC	and	ECDSA	later	in	details,	along	with	examples.

Most	public-key	cryptosystems	(like	RSA,	ECC,	DSA,	ECDSA	and	EdDSA)	are	quantum-breakable	(quantum-
unsafe),	which	means	that	(at	least	on	theory)	a	powerful	enough	quantum	computer	will	be	able	to	break	their
security	and	compute	the	private	key	from	given	public	key	in	seconds.

Asymmetric	Encryption	Schemes
Asymmetric	encryption	is	more	complicated	than	symmetric	encryption,	not	only	because	it	uses	public	and	private
keys,	but	because	asymmetric	encryption	can	encrypt	/	decrypt	only	small	messages,	which	should	be	mapped	to	the
underlying	math	of	the	public-key	cryptosystem.	In	the	RSA	system,	the	input	message	should	be	transformed	to	big
integer	(e.g.	using	OAEP	padding),	while	in	ECC	the	message	should	be	mapped	to	elliptic	curve	point	to	be
encrypted.	Additionally,	asymmetric	ciphers	are	significantly	slower	than	symmetric	ciphers	(e.g.	the	RSA	encryption
is	1000	times	slower	than	AES).

Asymmetric	Key	Ciphers

97

https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/McEliece_cryptosystem
https://en.wikipedia.org/wiki/NTRU
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Schnorr_signature
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale

To	overcome	the	above	limitations	and	to	allow	encrypting	messages	of	any	size,	modern	cryptography	uses
asymmetric	encryption	schemes	(also	known	as	public	key	encryption	schemes	/	asymmetric	encryption
constructions	/	hybrid	encryption	schemes),	like	key	encapsulation	mechanisms	and	integrated	encrypted
schemes,	which	combine	asymmetric	encryption	with	symmetric	key	ciphers.

This	is	how	a	large	document	or	file	can	be	encrypted	by	combining	public-key	cryptography	and	symmetric
crypto	algorithm:

This	is	the	corresponding	decryption	process	(decrypt	an	encrypted	large	document	using	public-key	cryptography
and	symmetric	crypto	algorithm):

Examples	of	such	asymmetric	encryption	schemes	are:	RSA-OAEP,	RSA-KEM	and	ECIES-KEM.

Integrated	Encryption	Schemes
Integrated	encryption	schemes	(IES)	are	modern	public	key	encryption	schemes,	which	combine	symmetric
ciphers,	asymmetric	ciphers	and	key-derivation	algorithms	to	provide	secure	public-key	based	encryption.	In	EIS
scheme	asymmetric	algorithms	(like	RSA	or	ECC)	are	used	to	encrypt	or	encapsulate	a	symmetric	key,	used	later	by
symmetric	ciphers	(like	AES	or	ChaCha20)	to	encrypt	the	input	message.	Some	EIS	schemes	provide	also	message
authentication.	Examples	of	EIS	schemes	are	DLIES	(Discrete	Logarithm	Integrated	Encryption	Scheme)	and	ECIES
(Elliptic	Curve	Integrated	Encryption	Scheme).

Key	Encapsulation	Mechanisms	(KEMs)
A	key	encapsulation	mechanisms	(KEM)	are	asymmetric	cryptographic	techniques	to	encrypt	a	secret	key	that	is
used	to	encrypt	an	input	message	using	symmetric	cryptographic	cipher,	called	a	data	encapsulation	mechanism
(DEM).	Key	encapsulation	mechanisms	are	used	in	the	hybrid	encryption	schemes	and	in	the	integrated	encryption
schemes,	where	a	random	element	is	generated	in	the	underlying	public-key	cryptosystem	and	a	symmetric	key	is

Asymmetric	Key	Ciphers

98

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://tools.ietf.org/html/rfc5990#appendix-A
https://www.w3.org/TR/xmlsec-generic-hybrid/#sec-ecies-kem
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Key_encapsulation

derived	from	this	random	element	by	hashing.	This	approach	simplifies	the	process	of	combining	asymmetric	and
symmetric	encryption.	Examples	of	modern	key	encapsulation	mechanisms	are:	RSA-KEM,	ECIES-KEM	and	PSEC-
KEM.

Digital	Signatures
In	cryptography	digital	signatures	provide	message	authentication,	integrity	and	non-repudiation	for	digital
documents.	Digital	signatures	work	in	the	public-key	cryptosystems	and	use	a	public	/	private	key	pairs.	Message
signing	is	performed	by	the	private	key	and	message	verification	is	performed	by	the	corresponding	public	key.

A	message	signature	mathematically	guarantees	that	certain	message	was	signed	by	certain	(secret)	private	key,
which	corresponds	to	certain	(non-secret)	public	key.	After	a	message	is	signed,	the	message	and	the	signature
cannot	be	modified	and	thus	message	authentication	and	integrity	is	provided.	Anyone,	who	knows	the	public
key	of	the	message	signer,	can	verify	the	signature.	Аfter	signing	the	signature	author	cannot	reject	the	act	of
signing	(this	is	known	as	non-repudiation).

Digital	signatures	are	widely	used	today	for	signing	digital	contracts,	for	authorizing	bank	payments	and	signing
transactions	in	the	public	blockchain	systems	for	transferring	digital	assets.

Most	public-key	cryptosystems	like	RSA	and	ECC	provide	secure	digital	signature	schemes	like	DSA,	ECDSA	and
EdDSA.	We	shall	discuss	the	digital	signatures	in	greater	detail	later	in	this	section.

Key	Exchange	Algorithms
In	cryptography	key	exchange	algorithms	(key	agreement	protocols	/	key	negotiation	schemes)	allow
cryptographic	keys	to	be	exchanged	between	two	parties,	allowing	the	use	of	a	cryptographic	algorithm,	in	most	cases
symmetric	encryption	cipher.	For	example,	when	a	laptop	connects	to	the	home	WiFi	router,	both	parties	agree	on	a
session	key,	used	to	symmetrically	encrypt	the	network	traffic	between	them.

Most	key-exchange	algorithms	are	based	on	public-key	cryptography	and	the	math	behind	this	system:	discrete
logarithms,	elliptic	curves	or	other.

Anonymous	key	exchange,	like	Diffie–Hellman	(DHKE	and	ECDH),	does	not	provide	authentication	of	the	parties,
and	is	thus	vulnerable	to	man-in-the-middle	attacks,	but	is	safe	from	traffic	interception	(sniffing)	attacks.

Authenticated	key	agreement	schemes	authenticate	the	identities	of	parties	involved	in	the	key	exchange	and	thus
prevent	man-in-the-middle	attacks	by	use	of	digitally	signed	keys	(e.g.	PKI	certificate),	password-authenticated
key	agreement	or	other	method.

Asymmetric	Key	Ciphers

99

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Key_exchange
https://en.wikipedia.org/wiki/Key-agreement_protocol
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Sniffing_attack
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Password-authenticated_key_agreement

The	RSA	Cryptosystem	-	Concepts
The	RSA	cryptosystem	is	one	of	the	first	public-key	cryptosystems,	based	on	the	math	of	the	modular
exponentiations	and	the	computational	difficulty	of	the	RSA	problem	and	the	closely	related	integer	factorization
problem	(IFP).	The	RSA	algorithm	is	named	after	the	initial	letters	of	its	authors	(Rivest–Shamir–Adleman)	and	is
widely	used	in	the	early	ages	of	computer	cryptography.

Later,	when	ECC	cryptography	evolved,	the	ECC	slowly	became	dominant	in	the	asymmetric	cryptosystems,	because
of	its	higher	security	and	shorter	key	lengths	than	RSA.

The	RSA	algorithm	provides:

Key-pair	generation:	generate	random	private	key	(typically	of	size	1024-4096	bits)	and	corresponding	public
key.
Encryption:	encrypt	a	secret	message	(integer	in	the	range	[0...key_length])	using	the	public	key	and	decrypt	it
back	using	the	secret	key.
Digital	signatures:	sign	messages	(using	the	private	key)	and	verify	message	signature	(using	the	public	key).
Key	exchange:	securely	transport	a	secret	key,	used	for	encrypted	communication	later.

RSA	can	work	with	keys	of	different	keys	of	length:	1024,	2048,	3072,	4096,	8129,	16384	or	even	more	bits.	Key
length	of	3072-bits	and	above	are	considered	secure.	Longer	keys	provide	higher	security	but	consume	more
computing	time,	so	there	is	a	tradeoff	between	security	and	speed.	Very	long	RSA	keys	(e.g.	50000	bits	or	65536
bits)	may	be	too	slow	for	practical	use,	e.g.	key	generation	may	take	from	several	minutes	to	several	hours.

RSA	Key	Generation
Generating	an	RSA	public	+	private	key	pair	involves	the	following:

Using	some	non-trivial	math	computations	from	the	number	theory,	find	three	very	large	integers	e,	d	and	n,	such	that:

(m) 	≡	m	(mod	n)	for	all	m	in	the	range	[0...n)

The	integer	number	n	is	called	"modulus"	and	it	defines	the	RSA	key	length.	It	is	typically	very	large	prime	number
(e.g.	2048	bits).

The	pair	{n,	e}	is	the	public	key.	It	is	designed	to	be	shared	with	everyone.	The	number	e	is	called	"public	key
exponent".	It	is	usually	65537	(0x010001).

The	pair	{n,	d}	is	the	private	key.	It	is	designed	to	be	kept	in	secret.	It	is	practically	infeasible	to	calculate	the	private
key	from	the	public	key	{n,	e}.	The	number	d	is	called	"private	key	exponent"	(the	secret	exponent).

RSA	Public	Key	-	Example
Example	of	2048-bit	RSA	public	key	(represented	as	2048-bit	hexadecimal	integer	modulus	n	and	24-bit	public
exponent	e):

n	=	0xa709e2f84ac0e21eb0caa018cf7f697f774e96f8115fc2359e9cf60b1dd8d4048d974cdf8422bef6be3c16
2b04b916f7ea2133f0e3e4e0eee164859bd9c1e0ef0357c142f4f633b4add4aab86c8f8895cd33fbf4e024d9a3ad
6be6267570b4a72d2c34354e0139e74ada665a16a2611490debb8e131a6cffc7ef25e74240803dd71a4fcd953c98
8111b0aa9bbc4c57024fc5e8c4462ad9049c7f1abed859c63455fa6d58b5cc34a3d3206ff74b9e96c336dbacf0cd
d18ed0c66796ce00ab07f36b24cbe3342523fd8215a8e77f89e86a08db911f237459388dee642dae7cb2644a03e7
1ed5c6fa5077cf4090fafa556048b536b879a88f628698f0c7b420c4b7
e	=	0x010001

The	same	RSA	public	key,	encoded	in	the	traditional	for	RSA	format	PKCS#8	PEM	ASN.1	looks	like	this:

e d

The	RSA	Cryptosystem	-	Concepts

100

https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Key_generation
https://en.wikipedia.org/wiki/PKCS_8
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

-----BEGIN	PUBLIC	KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEApwni+ErA4h6wyqAYz39p
f3dOlvgRX8I1npz2Cx3Y1ASNl0zfhCK+9r48FisEuRb36iEz8OPk4O7hZIWb2cHg
7wNXwUL09jO0rdSquGyPiJXNM/v04CTZo61r5iZ1cLSnLSw0NU4BOedK2mZaFqJh
FJDeu44TGmz/x+8l50JAgD3XGk/NlTyYgRGwqpu8TFcCT8XoxEYq2QScfxq+2FnG
NFX6bVi1zDSj0yBv90uelsM226zwzdGO0MZnls4AqwfzayTL4zQlI/2CFajnf4no
agjbkR8jdFk4je5kLa58smRKA+ce1cb6UHfPQJD6+lVgSLU2uHmoj2KGmPDHtCDE
twIDAQAB
-----END	PUBLIC	KEY-----

The	above	PEM	ASN.1-encoded	message,	holding	the	RSA	public	key,	can	be	decoded	here:	https://lapo.it/asn1js.

RSA	Private	Key	-	Example
Example	of	2048-bit	RSA	private	key,	corresponding	to	the	above	given	public	key	(represented	as	hexadecimal
2048-bit	integer	modulus	n	and	2048-bit	secret	exponent	d):

n	=	0xa709e2f84ac0e21eb0caa018cf7f697f774e96f8115fc2359e9cf60b1dd8d4048d974cdf8422bef6be3c16
2b04b916f7ea2133f0e3e4e0eee164859bd9c1e0ef0357c142f4f633b4add4aab86c8f8895cd33fbf4e024d9a3ad
6be6267570b4a72d2c34354e0139e74ada665a16a2611490debb8e131a6cffc7ef25e74240803dd71a4fcd953c98
8111b0aa9bbc4c57024fc5e8c4462ad9049c7f1abed859c63455fa6d58b5cc34a3d3206ff74b9e96c336dbacf0cd
d18ed0c66796ce00ab07f36b24cbe3342523fd8215a8e77f89e86a08db911f237459388dee642dae7cb2644a03e7
1ed5c6fa5077cf4090fafa556048b536b879a88f628698f0c7b420c4b7
d	=	0x10f22727e552e2c86ba06d7ed6de28326eef76d0128327cd64c5566368fdc1a9f740ad8dd221419a5550fc
8c14b33fa9f058b9fa4044775aaf5c66a999a7da4d4fdb8141c25ee5294ea6a54331d045f25c9a5f7f47960acbae
20fa27ab5669c80eaf235a1d0b1c22b8d750a191c0f0c9b3561aaa4934847101343920d84f24334d3af05fede0e3
55911c7db8b8de3bf435907c855c3d7eeede4f148df830b43dd360b43692239ac10e566f138fb4b30fb1af0603cf
cf0cd8adf4349a0d0b93bf89804e7c2e24ca7615e51af66dccfdb71a1204e2107abbee4259f2cac917fafe3b029b
af13c4dde7923c47ee3fec248390203a384b9eb773c154540c5196bce1

The	same	RSA	private	key,	encoded	in	the	traditional	for	RSA	format	PKCS#8	PEM	ASN.1	looks	a	bit	longer:

-----BEGIN	RSA	PRIVATE	KEY-----
MIIEowIBAAKCAQEApwni+ErA4h6wyqAYz39pf3dOlvgRX8I1npz2Cx3Y1ASNl0zf
hCK+9r48FisEuRb36iEz8OPk4O7hZIWb2cHg7wNXwUL09jO0rdSquGyPiJXNM/v0
4CTZo61r5iZ1cLSnLSw0NU4BOedK2mZaFqJhFJDeu44TGmz/x+8l50JAgD3XGk/N
lTyYgRGwqpu8TFcCT8XoxEYq2QScfxq+2FnGNFX6bVi1zDSj0yBv90uelsM226zw
zdGO0MZnls4AqwfzayTL4zQlI/2CFajnf4noagjbkR8jdFk4je5kLa58smRKA+ce
1cb6UHfPQJD6+lVgSLU2uHmoj2KGmPDHtCDEtwIDAQABAoIBABDyJyflUuLIa6Bt
ftbeKDJu73bQEoMnzWTFVmNo/cGp90CtjdIhQZpVUPyMFLM/qfBYufpARHdar1xm
qZmn2k1P24FBwl7lKU6mpUMx0EXyXJpff0eWCsuuIPonq1ZpyA6vI1odCxwiuNdQ
oZHA8MmzVhqqSTSEcQE0OSDYTyQzTTrwX+3g41WRHH24uN479DWQfIVcPX7u3k8U
jfgwtD3TYLQ2kiOawQ5WbxOPtLMPsa8GA8/PDNit9DSaDQuTv4mATnwuJMp2FeUa
9m3M/bcaEgTiEHq77kJZ8srJF/r+OwKbrxPE3eeSPEfuP+wkg5AgOjhLnrdzwVRU
DFGWvOECgYEAyIk7F0S0AGn2aryhw9CihDfimigCxEmtIO5q7mnItCfeQwYPsX72
1fLpJNgfPc9DDfhAZ2hLSsBlAPLUOa0Cuny9PCBWVuxi1WjLVaeZCV2bF11mAgW2
fjLkAXT34IX+HZl60VoetSWq9ibfkJHeCAPnh/yjdB3Vs+2wxNkU8m8CgYEA1Tzm
mjJq7M6f+zMo7DpRwFazGMmrLKFmHiGBY6sEg7EmoeH2CkAQePIGQw/Rk16gWJR6
DtUZ9666sjCH6/79rx2xg+9AB76XTFFzIxOk9cm49cIosDMk4mogSfK0Zg8nVbyW
5nEb//9JCrZ18g4lD3IrT5VJoF4MhfdBUjAS1jkCgYB+RDIpv3+bNx0KLgWpFwgN
Omb667B6SW2ya4x227KdBPFkwD9HYosnQZDdOxvIvmUZObPLqJan1aaDR2Krgi1S
oNJCNpZGmwbMGvTU1Pd+Nys9NfjR0ykKIx7/b9fXzman2ojDovvs0W/pF6bzD3V/
FH5HWKLOrS5u4X3JJGqVDwKBgQCd953FwW/gujld+EpqpdGGMTRAOrXqPC7QR3X5
Beo0PPonlqOUeF07m9/zsjZJfCJBPM0nS8sO54w7ESTAOYhpQBAPcx/2HMUsrnIj

The	RSA	Cryptosystem	-	Concepts

101

https://lapo.it/asn1js
https://en.wikipedia.org/wiki/PKCS_8
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

HBxqUOQKe6l0zo6WhJQi8/+cU8GKDEmlsUlS3iWYIA9EICJoTOW08R04BjQ00jS7
1A1AUQKBgHlHrV/6S/4hjvMp+30hX5DpZviUDiwcGOGasmIYXAgwXepJUq0xN6aa
lnT+ykLGSMMY/LABQiNZALZQtwK35KTshnThK6zB4e9p8JUCVrFpssJ2NCrMY3SU
qw87K1W6engeDrmunkJ/PmvSDLYeGiYWmEKQbLQchTxx1IEddXkK
-----END	RSA	PRIVATE	KEY-----

It	holds	the	entire	RSA	key-pair	structure,	along	with	several	additional	parameters:	2048-bit	modulus	n,	24-bit
public	exponent	e,	2048-bit	secret	exponent	d,	first	factor	p,	second	factor	q,	and	3	other	integers	from	the	RSA
internal	data	structure:

The	above	PEM	ASN.1-encoded	message,	holding	the	RSA	private	key	data,	can	be	decoded	here:
https://lapo.it/asn1js.

RSA	Cryptography:	Encrypt	a	Message
Encrypting	a	message	using	certain	RSA	public	key	{n,	e}	is	done	by	the	following	transformation:

encryptedMsg	=	(msg) 	mod	n

The	msg	here	is	a	number	in	the	range	[0...n).	Text	messages	should	be	encoded	as	integers	in	the	range	[0...n)
before	encryption	(see	EAOP).	For	larger	texts,	hybrid	encryption	should	be	used	(encrypt	a	secret	key	and	use	it	to
symmetrically	encrypt	the	text,	see	RSA-KEM).

The	above	operation	cannot	be	reversed:	no	efficient	algorithm	exists	to	calculate	msg	from	encryptedMsg,	e	and	n
(see	the	RSA	problem),	which	all	are	public	(non-secret)	by	design.

RSA	Cryptography:	Decrypt	a	Message
Decrypting	the	encrypted	message	using	the	corresponding	RSA	private	key	{n,	d}	is	done	by	the	following
transformation:

decryptedMsg	=	(encryptedMsg) 	mod	n

Why	this	is	correct?	Recall,	that	by	definition	the	RSA	key-pair	has	the	following	property:

(m) 	≡	m	(mod	n)	for	any	m	in	the	range	[0...n)

From	the	encryption	transformation	we	have:

encryptedMsg	=	(msg) 	mod	n

Hence:

decryptedMsg	=	(encryptedMsg) 	mod	n	=	((msg) 	mod	n) 	=	((msg)) 	mod	n	=	(msg)	mod	n	=	msg

RSA	Encrypt	and	Decrypt	-	Example
Let	examine	one	example	of	RSA	encryption	and	decryption,	along	with	the	calculations,	following	the	above
formulas.	Assume	we	have	generated	the	RSA	public-private	key	pair:

modulus	n	=	143
public	exponent	e	=	7
private	exponent	d	=	103
public	key	=	{n,	e}	=	{143,	7}
private	key	=	{n,	d}	=	{143,	103}

Let's	encrypt	a	secret	message	msg	=	83.	Just	follow	the	formula:

encryptedMsg	=	msg 	mod	n	=	83 	mod	143	=	27136050989627	mod	143	=	8

e

d

e d

e

d e d e d

e 7

The	RSA	Cryptosystem	-	Concepts

102

https://lapo.it/asn1js
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://tools.ietf.org/html/rfc5990
https://en.wikipedia.org/wiki/RSA_problem

Now,	let's	decrypt	the	encrypted	message	back	to	its	original	value:

decryptedMsg	=	encryptedMsg 	mod	n	=	8 	mod	143	=
104296241988325687616944419246560161845835181755695936032570391006944322547882839356589945
6512	mod	143	=	83

The	RSA	calculations	work	correctly.	This	is	because	the	key-pair	meets	the	RSA	property:

(m) 	≡	m	(mod	n)	for	all	m	in	the	range	[0...n)
(m) 	≡	m	(mod	143)	for	all	m	in	the	range	[0...143)

In	the	real	world,	typically	the	RSA	modulus	n	and	the	private	exponent	d	are	3072-bit	or	4096-bit	integers	and	the
public	exponent	e	is	65537.

For	further	reading,	look	at	this	excellent	explanation	about	how	RSA	works	in	detail	with	explainations	and
examples:	http://doctrina.org/How-RSA-Works-With-Examples.html.

Because	RSA	encryption	is	a	deterministic	(has	no	random	component)	attackers	can	successfully	launch	a	chosen
plaintext	attack	against	by	encrypting	likely	plaintexts	with	the	public	key	and	test	if	they	are	equal	to	the	ciphertext.
This	may	not	be	a	problem,	but	is	a	weakness,	that	should	be	considered	when	developers	choose	an	encryption
scheme.

Hybrid	encryption	schemes	like	RSA-KEM	solve	this	vulnerability	and	allow	encrypting	longer	texts.

d 103

e d
7 103

The	RSA	Cryptosystem	-	Concepts

103

http://doctrina.org/How-RSA-Works-With-Examples.html
https://en.wikipedia.org/wiki/Chosen-plaintext_attack

RSA	Encryption	/	Decryption	-	Examples	in	Python
Now	let's	demonstrate	how	the	RSA	algorithms	works	by	a	simple	example	in	Python.	The	below	code	will	generate
random	RSA	key-pair,	will	encrypt	a	short	message	and	will	decrypt	it	back	to	its	original	form,	using	the	RSA-
OAEP	padding	scheme.

First,	install	the		pycryptodome		package,	which	is	a	powerful	Python	library	of	low-level	cryptographic	primitives

(hashes,	MAC	codes,	key-derivation,	symmetric	and	asymmetric	ciphers,	digital	signatures):

pip	install	pycryptodome

RSA	Key	Generation
Now,	let's	write	the	Python	code.	First,	generate	the	RSA	keys	(1024-bit)	and	print	them	on	the	console	(as	hex
numbers	and	in	the	PKCS#8	PEM	ASN.1	format):

from	Crypto.PublicKey	import	RSA
from	Crypto.Cipher	import	PKCS1_OAEP
import	binascii

keyPair	=	RSA.generate(3072)

pubKey	=	keyPair.publickey()
print(f"Public	key:		(n={hex(pubKey.n)},	e={hex(pubKey.e)})")
pubKeyPEM	=	pubKey.exportKey()
print(pubKeyPEM.decode('ascii'))

print(f"Private	key:	(n={hex(pubKey.n)},	d={hex(keyPair.d)})")
privKeyPEM	=	keyPair.exportKey()
print(privKeyPEM.decode('ascii'))

We	use	short	key	length	to	keep	the	sample	input	short,	but	in	a	real	world	scenario	it	is	recommended	to	use	3072-bit
or	4096-bit	keys.

RSA	Encryption
Next,	encrypt	the	message	using	RSA-OAEP	encryption	scheme	(RSA	with	PKCS#1	OAEP	padding)	with	the	RSA
public	key:

msg	=	b'A	message	for	encryption'
encryptor	=	PKCS1_OAEP.new(pubKey)
encrypted	=	encryptor.encrypt(msg)
print("Encrypted:",	binascii.hexlify(encrypted))

RSA	Decryption
Finally,	decrypt	the	message	using	using	RSA-OAEP	with	the	RSA	private	key:

decryptor	=	PKCS1_OAEP.new(keyPair)
decrypted	=	decryptor.decrypt(encrypted)
print('Decrypted:',	decrypted)

Sample	Output

RSA	Encrypt	/	Decrypt	-	Examples

104

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

A	sample	output	of	the	code	execution	for	the	entire	example	is	given	below:

Public	key:	(n=0x9a11485bccb9569410a848fb1afdf2a81b17c1fa9f9eb546fd1deb873b49b693a4edf20eb83
62c085cd5b28ba109dbad2bd257a013f57f745402e245b0cc2d553c7b2b8dbba57ebda7f84cfb32b7d9c254f03db
d0188e4b8e40c47b64c1bd2572834b936ffc3da9953657ef8bee80c49c2c12933c8a34804a00eb4c81248e01f,	e
=0x10001)
-----BEGIN	PUBLIC	KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCaEUhbzLlWlBCoSPsa/fKoGxfB
+p+etUb9HeuHO0m2k6Tt8g64NiwIXNWyi6EJ260r0legE/V/dFQC4kWwzC1VPHsr
jbulfr2n+Ez7MrfZwlTwPb0BiOS45AxHtkwb0lcoNLk2/8PamVNlfvi+6AxJwsEp
M8ijSASgDrTIEkjgHwIDAQAB
-----END	PUBLIC	KEY-----
Private	key:	(n=0x9a11485bccb9569410a848fb1afdf2a81b17c1fa9f9eb546fd1deb873b49b693a4edf20eb8
362c085cd5b28ba109dbad2bd257a013f57f745402e245b0cc2d553c7b2b8dbba57ebda7f84cfb32b7d9c254f03d
bd0188e4b8e40c47b64c1bd2572834b936ffc3da9953657ef8bee80c49c2c12933c8a34804a00eb4c81248e01f,	
d=0x318ab12be3cf0d4a1b7921cead454fcc42ba070462639483394d6fb9529547827e9c8d23b294a8e01f8a1019
da34e350f2307740e06a270bef1fe646e6ad213e31b528fdd5f5d03e633c07c44755ed622a629d79e822c095ebdf
9cc80e517b5566dd3d3e5b16ec737987337a0e497fdba4b5ad97af41c1c3cdd87542a4637d81)
-----BEGIN	RSA	PRIVATE	KEY-----
MIICXAIBAAKBgQCaEUhbzLlWlBCoSPsa/fKoGxfB+p+etUb9HeuHO0m2k6Tt8g64
NiwIXNWyi6EJ260r0legE/V/dFQC4kWwzC1VPHsrjbulfr2n+Ez7MrfZwlTwPb0B
iOS45AxHtkwb0lcoNLk2/8PamVNlfvi+6AxJwsEpM8ijSASgDrTIEkjgHwIDAQAB
AoGAMYqxK+PPDUobeSHOrUVPzEK6BwRiY5SDOU1vuVKVR4J+nI0jspSo4B+KEBna
NONQ8jB3QOBqJwvvH+ZG5q0hPjG1KP3V9dA+YzwHxEdV7WIqYp156CLAlevfnMgO
UXtVZt09PlsW7HN5hzN6Dkl/26S1rZevQcHDzdh1QqRjfYECQQDGDUIQXlOiAcGo
d5YqAGpWe0wzJ0UypeqZcqS9MVe9OkjjopCkkYntifdN/1oG7S/1KUMtLoGHqntb
c428zOO/AkEAxyV0cmuJbFdfM0x2XhZ+ge/7putIx76RHDOjBpM6VQXpLEFj54kB
qGLAB7SXr7P4AFrEjfckJOp2YMI5BreboQJAb3EUZHt/WeDdJLutzpKPQ3x7oykM
wfQkbxXYZvD16u96BkT6WO/gCb6hXs05zj32x1/hgfHyRvGCGjKKZdtwpwJBAJ74
y0g7h+wwoxJ0S1k4Y6yeQikxUVwCSBxXLCCnjr0ohsaJPJMrz2L30YtVInFkHOlL
i/Q4AWZmtDDxWkx+bYECQG8e6bGoszuX5xjvhEBslIws9+nMzMuYBR8HvhLo58B5
N8dk3nIsLs3UncKLiiWubMAciU5jUxZoqWpRXXwECKE=
-----END	RSA	PRIVATE	KEY-----
Encrypted:	b'99b331c4e1c8f3fa227aacd57c85f38b7b7461574701b427758ee4f94b1e07d791ab70b55d672ff
55dbe133ac0bea16fc23ea84636365f605a9b645e0861ee11d68a7550be8eb35e85a4bde6d73b0b956d000866425
511c7920cdc8a3786a4f1cb1986a875373975e158d74e11ad751594de593a35de765fe329c0d3dfbbfedc'
Decrypted:	b'A	message	for	encryption'

Notes:

If	you	run	the	above	example,	your	output	will	be	different,	because	it	generates	different	random	RSA	key-pair
at	each	execution.
Even	if	you	encrypt	the	same	message	several	times	with	the	same	public	key,	you	will	get	different	output.
This	is	because	the	OAEP	padding	algorithm	injects	some	randomness	with	the	padding.
If	you	try	to	encrypt	larger	messages,	you	will	get	and	exception,	because	the	1024-bit	key	limits	the	maximum
message	length.

Now	play	with	the	above	code,	modify	it	and	run	it	to	learn	how	RSA	works	in	action.

RSA	Encrypt	/	Decrypt	-	Examples

105

Exercises:	Encrypt	/	Decrypt	Messages	using	RSA
In	this	exercise	you	shall	encrypt	and	decrypt	messages	using	the	RSA	public-key	cryptosystem.

Encrypt	Message	with	RSA-OAEP
You	are	given	a	text	message	and	a	RSA	public	key	(in	PEM	format).	Write	a	program	to	encrypt	the	message,
using	the	RSA-OAEP	encryption	scheme	(RSA	+	PKCS#1	OAEP	padding).

Input:

First	line:	the	input	message
Next	few	lines:	the	RSA	public	key	(in	the	PKCS#8	PEM	ASN.1	format)
The	public	key	length	can	be	512	bits,	1024	bits,	2048	bits,	3072	bits	or	4096	bits.

Output:

The	encrypted	message,	printed	as	hex	string.

Write	your	code	in	programming	language	of	choice.

Sample	input:

Secret	message
-----BEGIN	PUBLIC	KEY-----
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAMYhCcGpfoebriBbFaUMMwH3B5t7udir
ODJehnQTPlWLf9SVfQdx0v9ATJ2Rs5kQjdJ/wZYunMBVq6/FhgPZexsCAwEAAQ==
-----END	PUBLIC	KEY-----

The	above	input	uses	a	512-bit	RSA	public	key	and	a	small	plain	text	message,	that	can	fit	inside	the	key	length
(after	the	OAEP	padding).

Sample	output	(for	the	above	input):

218dd78c5e14b4d58efd10575b521db46c0caa5c699134abf18bbeeac170cfe446e25d0d82257082539e4ccd3e0a
a8bffc1b07d2bde9e635a7b9b7fc6cf4c266

Note:	the	above	output	should	be	different	at	each	execution	due	to	the	randomness	injected	by	the	OAEP	padding
algorithm.

Decrypt	a	Message	with	RSA-OAEP
You	are	given	a	RSA-OAEP-encrypted	ciphertext	(as	hex	string)	and	a	RSA	private	key	(in	PEM	format).	Write	a
program	to	decrypt	the	message,	using	the	RSA-OAEP	encryption	scheme	(RSA	+	PKCS#1	OAEP	padding).

Input:

First	line:	the	ciphertext	(the	encrypted	message),	given	as	hex	string
Next	few	lines:	the	RSA	private	key	(in	the	PKCS#8	PEM	ASN.1	format)

Output:

Print	the	decrypted	message	as	plain	text
Print		Decryption	failed!		in	case	of	problem

Write	your	code	in	programming	language	of	choice.

Sample	input:

Exercises:	RSA	Encrypt	/	Decrypt

106

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/PKCS_8
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
https://en.wikipedia.org/wiki/PKCS_8
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

218dd78c5e14b4d58efd10575b521db46c0caa5c699134abf18bbeeac170cfe446e25d0d82257082539e4ccd3e0a
a8bffc1b07d2bde9e635a7b9b7fc6cf4c266
-----BEGIN	RSA	PRIVATE	KEY-----
MIIBOgIBAAJBAMYhCcGpfoebriBbFaUMMwH3B5t7udirODJehnQTPlWLf9SVfQdx
0v9ATJ2Rs5kQjdJ/wZYunMBVq6/FhgPZexsCAwEAAQJAbNSzBkTzMswqHq3Juupz
jk3CSP7ye/i5Grnfgx0a7WOGpVrEDQNo0iihEf5pRAfaazEdfJX2Tj+auuv06392
kQIhAOeJahRwOt8cYroLZzHHf7LWQglRaTbtKShqmbLdBZMzAiEA2xADyA3xGXcl
txN0DOfSycwFyqkdlfsuyAwKibPteHkCIQDJ1P6UzHR1UwA434HYYejOU3mDN+V4
zOoI4kwTIBohAwIgLrqv09EFiUUdSnxf2RDqqhlXcu+4W/IE/K904AL9uSECICeT
tkAnJHB7k6fvox6ErJV53w06bUF1jGw8yHuaCcHX
-----END	RSA	PRIVATE	KEY-----

The	above	input	uses	a	512-bit	RSA	private	key	and	an	encrypted	ciphertext	of	the	same	length.

Sample	output	(for	the	above	input):

Secret	message

Another	sample	input	(wrong	512-bit	private	key):

218dd78c5e14b4d58efd10575b521db46c0caa5c699134abf18bbeeac170cfe446e25d0d82257082539e4ccd3e0a
a8bffc1b07d2bde9e635a7b9b7fc6cf4c266
-----BEGIN	RSA	PRIVATE	KEY-----
MIIBOQIBAAJBAJd0kbrC4AxpcqBgWVPpb8IoI/kdQkF1twrfQtoMkHgB71vpY6Sg
68CUA7Ejq/dbAHlvFdXqwEK9vXH3kFpc8pcCAwEAAQJAaFrlXm2Pun2dgWthoTOi
0YCe6LKESF43dMJIab1mfYiltrSpGaoTXLvHR+NaAgqcr9KAH24Mi05ttUBcWRsI
QQIhAOLTSyeDZnq5rqdwBlU8p6USpeImRhWRNcCHA/QLxcaPAiEAqu+O1p1YB3Mp
GKgB9PvZE3TZqmlgtEFmSMYinF3g13kCIF9FjpCXMYkkysZLWG2e32+HaKOXneJb
Lq+iRjfQZg7jAiBcm6D1YRV6I8gWFZ/JzFBVHC95BdJgljYGI2JI+QuBcQIgLJjH
IPctSCUtukz+7fdeOdw/0FINcUGvnQyuEK34UxE=
-----END	RSA	PRIVATE	KEY-----

The	corresponding	output	should	be:

Decryption	failed!

Note	that	the	RSA-OAEP	padding	algorithm	has	built-in	checksum,	which	allows	to	detect	incorrect	decryption
attempts,	but	it	is	not	an	authenticated	encryption	scheme.

*	Implement	Hybrid	Encryption	/	Decryption	with	RSA-KEM
Write	a	program	to	encrypt	a	large	message	(bigger	than	the	RSA	key	length,	e.g.	a	PDF	document)	using	the	RSA-
KEM	hybrid	encryption	scheme	with	AES	symmetric	encryption	(use	block	mode	of	choice,	e.g.	GCM	or	CTR).

Hint:

Check	this	example	first:	https://github.com/digitalbazaar/forge#rsakem.
Note	that	in	some	languages	it	is	hard	to	find	and	RSA-KEM	implementation,	so	you	can	skip	this	exercise	or	use
another	hybrid	encryption	scheme	(e.g.	RSA	+	AES	+	HMAC).

Input:

The	message	for	encryption
RSA	public	key	(in	PEM	format)

Output:

Exercises:	RSA	Encrypt	/	Decrypt

107

https://github.com/digitalbazaar/forge#rsakem

The	encrypted	ciphertext	(hex	string)
The	random	IV	salt	for	the	AES	cipher	(hex	string)
The	authentication	tag	/	MAC	for	the	encrypted	message	(hex	string)
The	encapsulated	secret	key	for	the	AES	algorithm	(hex	string)

Write	a	program	to	decrypt	given	encrypted	message,	produced	by	the	previous	exercise,	using	the	RSA-KEM	hybrid
encryption	scheme	with	AES	symmetric	encryption	(use	block	mode	of	choice,	e.g.	GCM	or	CTR).

Input:

The	encrypted	ciphertext	(hex	string)
The	random	IV	salt	for	the	AES	cipher	(hex	string)
The	authentication	tag	/	MAC	for	the	encrypted	message	(hex	string)
The	encapsulated	secret	key	for	the	AES	algorithm	(hex	string)

Output:

The	decrypted	original	plaintext	message
Print		Decryption	failed!		if	the	message	decryption	is	not	successful	(e.g.	wrong	password)

Exercises:	RSA	Encrypt	/	Decrypt

108

Elliptic	Curve	Cryptography	(ECC)	-	Concepts
The	Elliptic	Curve	Cryptography	(ECC)	is	modern	family	of	public-key	cryptosystems,	which	is	based	on	the
algebraic	structures	of	the	elliptic	curves	over	finite	fields	and	on	the	difficulty	of	the	Elliptic	Curve	Discrete
Logarithm	Problem	(ECDLP).

ECC	implements	all	major	capabilities	of	the	asymmetric	cryptosystems:	encryption,	signatures	and	key	exchange.

The	ECC	cryptography	is	considered	a	natural	modern	successor	of	the	RSA	cryptosystem,	because	ECC	uses
smaller	keys	and	signatures	than	RSA	for	the	same	level	of	security	and	provides	very	fast	key	generation,	fast	key
agreement	and	fast	signatures.

ECC	Keys
The	private	keys	in	the	ECC	are	integers	(in	the	range	of	the	curve's	field	size,	typically	256-bit	integers).	Example	of
256-bit	ECC	private	key	(hex	encoded,	32	bytes,	64	hex	digits)	is:
	0x51897b64e85c3f714bba707e867914295a1377a7463a9dae8ea6a8b914246319	.

The	key	generation	in	the	ECC	cryptography	is	as	simple	as	securely	generating	a	random	integer	in	certain	range,
so	it	is	extremely	fast.	Any	number	within	the	range	is	valid	ECC	private	key.

The	public	keys	in	the	ECC	are	EC	points	-	pairs	of	integer	coordinates	{x,	y},	laying	on	the	curve.	Due	to	their
special	properties,	EC	points	can	be	compressed	to	just	one	coordinate	+	1	bit	(odd	or	even).	Thus	the	compressed
public	key,	corresponding	to	a	256-bit	ECC	private	key,	is	a	257-bit	integer.	Example	of	ECC	public	key
(corresponding	to	the	above	private	key,	encoded	in	the	Ethereum	format,	as	hex	with	prefix		02		or		03)	is:

	0x02f54ba86dc1ccb5bed0224d23f01ed87e4a443c47fc690d7797a13d41d2340e1a	.	In	this	format	the	public	key

actually	takes	33	bytes	(66	hex	digits),	which	can	be	optimized	to	exactly	257	bits.

Curves	and	Key	Length
ECC	crypto	algorithms	can	use	different	underlying	elliptic	curves.	Different	curves	provide	different	level	of	security
(cryptographic	strength),	different	performance	(speed)	and	different	key	length,	and	also	may	involve	different
algorithms.

ECC	curves,	adopted	in	the	popular	cryptographic	libraries	and	security	standards,	have	name	(named	curves,	e.g.
	secp256k1		or		Curve25519),	field	size	(which	defines	the	key	length,	e.g.	256-bit),	security	strength	(usually	the
field	size	/	2	or	less),	performance	(operations/sec)	and	many	other	parameters.

ECC	keys	have	length,	which	directly	depends	on	the	underlying	curve.	In	most	applications	(like	OpenSSL,
OpenSSH	and	Bitcoin)	the	default	key	length	for	the	ECC	private	keys	is	256	bits,	but	depending	on	the	curve	many
different	ECC	key	sizes	are	possible:	192-bit	(curve		secp192r1),	233-bit	(curve		sect233k1),	224-bit	(curve

	secp224k1),	256-bit	(curves		secp256k1		and		Curve25519),	283-bit	(curve		sect283k1),	384-bit	(curves		p384	

and		secp384r1),	409-bit	(curve		sect409r1),	414-bit	(curve		Curve41417),	448-bit	(curve		Curve448-

Goldilocks),	511-bit	(curve		M-511),	521-bit	(curve		P-521),	571-bit	(curve		sect571k1)	and	many	others.

ECC	Algorithms
Elliptic-curve	cryptography	(ECC)	provides	several	groups	of	algorithms,	based	on	the	math	of	the	elliptic	curves
over	finite	fields:

ECC	digital	signature	algorithms	like	ECDSA	(for	classical	curves)	and	EdDSA	(for	twisted	Edwards	curves).
ECC	encryption	algorithms	and	hybrid	encryption	schemes	like	the	ECIES	integrated	encryption	scheme	and
EEECC	(EC-based	ElGamal).
ECC	key	agreement	algorithms	like	ECDH,	X25519	and	FHMQV.

Elliptic	Curve	Cryptography	(ECC)

109

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://cse.unl.edu/~ssamal/crypto/EEECC.pdf
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/x25519/
https://fastd.readthedocs.io/en/v18/crypto/fhmqvc.html

All	these	algorithms	use	a	curve	behind	(like		secp256k1	,		curve25519		or		p521)	for	the	calculations	and	rely	of
the	difficulty	of	the	ECDLP	(elliptic	curve	discrete	logarithm	problem).	All	these	algorithms	use	public	/	private	key
pairs,	where	the	private	key	is	an	integer	and	the	public	key	is	a	point	on	the	elliptic	curve	(EC	point).	Let's	get	into
details	about	the	elliptic	curves	over	finite	fields.

Elliptic	Curves
In	mathematics	elliptic	curves	are	plane	algebraic	curves,	consisting	of	all	points	{x,	y},	described	by	the	equation:

Cryptography	uses	elliptic	curves	in	a	simplified	form	(Weierstras	form),	which	is	defined	as:

y 	=	x 	+	ax	+	b

For	example,	the	NIST	curve		secp256k1		(used	in	Bitcoin)	is	based	on	an	elliptic	curve	in	the	form:

y 	=	x 	+	7	(the	above	elliptic	curve	equation,	where	a	=	0	and	b	=	7)

This	is	a	visualization	of	the	above	elliptic	curve:

2 3

2 3

Elliptic	Curve	Cryptography	(ECC)

110

http://mathworld.wolfram.com/EllipticCurve.html
https://en.bitcoin.it/wiki/Secp256k1

To	learn	more	about	the	equations	of	the	elliptic	curves	and	how	they	look	like,	play	a	bit	with	this	online	elliptic
curve	visualization	tool:	https://www.desmos.com/calculator/ialhd71we3.

Elliptic	Curves	over	Finite	Fields
The	elliptic	curve	cryptography	(ECC)	uses	elliptic	curves	over	the	finite	field	 	(where	p	is	prime	and	p	>	3)	or

	(where	the	fields	size	p	=	2).	This	means	that	the	field	is	a	square	matrix	of	size	p	x	p	and	the	points	on	the
curve	are	limited	to	integer	coordinates	within	the	field	only.	All	algebraic	operations	within	the	field	(like	point
addition	and	multiplication)	result	in	another	point	within	the	field.	The	elliptic	curve	equation	over	the	finite	field	
takes	the	following	modular	form:

y 	≡	x 	+	ax	+	b	(mod	p)

Respectively,	the	"Bitcoin	curve"		secp256k1		takes	the	form:

y 	≡	x 	+	7	(mod	p)

Unlike	RSA,	which	uses	for	its	key	space	the	integers	in	the	range	[0...p-1]	(the	field	ℤ),	the	ECC	uses	the	points
{x,	y}	within	the	Galois	field	 	(where	x	and	y	are	integers	in	the	range	[0...p-1]).

An	elliptic	curve	over	the	finite	field	 	consists	of:

a	set	of	integer	coordinates	{x,	y},	such	that	0	≤	x,	y	<	p
staying	on	the	elliptic	curve:	y 	≡	x 	+	ax	+	b	(mod	p)

Example	of	elliptic	curve	over	the	finite	field	 :

y 	≡	x 	+	7	(mod	17)

This	elliptic	curve	over	 	looks	like	this:

p
2m

m

p

2 3

2 3

p
p

p

2 3

17
2 3

17

Elliptic	Curve	Cryptography	(ECC)

111

https://www.desmos.com/calculator/ialhd71we3
https://en.wikipedia.org/wiki/Finite_field

Note	that	the	elliptic	curve	over	finite	field	y 	≡	x 	+	7	(mod	17)	consists	of	the	blue	points	at	the	above	figure,	i.e.	in
practice	the	"elliptic	curves"	used	in	cryptography	are	"sets	of	points	in	square	matrix",	not	classical	"curves".

The	above	curve	is	"educational".	It	provides	very	small	key	length	(4-5	bits).	In	the	real	world	developers	typically
use	curves	of	256-bits	or	more.

Elliptic	Curves	over	Finite	Fields:	Calculations
It	is	pretty	easy	to	calculate	whether	certain	point	belongs	to	certain	elliptic	curve	over	a	finite	field.	For	example,	a
point	{x,	y}	belongs	to	the	curve	y 	≡	x 	+	7	(mod	17)	when	and	only	when:

x 	+	7	-	y 	≡	0	(mod	17)

The	point	P	{5,	8}	belongs	to	the	curve,	because		(5**3	+	7	-	8**2)	%	17	==	0	.	The	point	{9,	15}	does	not
belong	to	the	curve,	because		(9**3	+	7	-	15**2)	%	17	!=	0	.	These	calculations	are	in	Python	style.	The	above
mentioned	elliptic	curve	and	the	points	{5,	8}	and	{9,	15}	are	visualized	below:

2 3

2 3

3 2

Elliptic	Curve	Cryptography	(ECC)

112

Multiplying	ECC	Point	by	Integer
Two	points	over	an	elliptic	curve	(EC	points)	can	be	added	and	the	result	is	another	point.	This	operation	is	known	as
EC	point	addition.	If	we	add	a	point	G	to	itself,	the	result	is	G	+	G	=	2	*	G.	If	we	add	G	again	to	the	result,	we	will
obtain	3	*	G	and	so	on.	This	is	how	EC	point	multiplication	is	defined.

A	point	G	over	an	elliptic	curve	over	finite	field	(EC	point)	can	be	multiplied	by	an	integer	k	and	the	result	is	another
EC	point	P	on	the	same	curve	and	this	operation	is	fast:

P	=	k	*	G

The	above	operation	involves	some	formulas	and	transformations,	but	for	simplicity,	we	shall	skip	them.	The	important
thing	to	know	is	that	multiplying	EC	point	by	integer	returns	another	EC	point	on	the	same	curve	and	this
operation	is	fast.	Multiplying	an	EC	point	by	0	returns	a	special	EC	point	called	"infinity".

Everyone	is	free	to	read	more	about	EC	point	multiplication	in	Wikipedia.

Example:	Multiply	EC	Point	by	Integer
The	formulas	for	EC	multiplication	differ	for	the	different	forms	of	representation	of	the	curve.	In	this	example,	we
shall	use	an	elliptic	curve	in	the	classical	Weierstrass	form.

2 3

Elliptic	Curve	Cryptography	(ECC)

113

https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

For	example	let's	take	the	EC	point	G	=	{15,	13}	on	the	elliptic	curve	over	finite	field	y 	≡	x 	+	7	(mod	17)	and	multiply
it	by	k	=	6.	We	shall	obtain	an	EC	point	P	=	{5,	8}:

P	=	k	*	G	=	6	*	{15,	13}	=	{5,	8}

The	below	figure	visualizes	this	example	of	EC	point	multiplication:

Order	and	Cofactor	of	Elliptic	Curve
Аn	elliptic	curve	over	a	finite	field	can	form	a	finite	cyclic	algebraic	group,	which	consists	of	all	the	points	on	the
curve.	In	a	cyclic	group,	if	two	EC	points	are	added	or	an	EC	point	is	multiplied	to	an	integer,	the	result	is	another	EC
point	from	the	same	cyclic	group	(and	on	the	same	curve).	The	order	of	the	curve	is	the	total	number	of	all	EC
points	on	the	curve.	This	total	number	of	points	includes	also	the	special	point	called	"point	at	infinity",	which	is
obtained	when	a	point	is	multiplied	by	0.

Some	curves	form	a	single	cyclic	group	(holding	all	their	EC	points),	while	others	form	several	non-overlapping
cyclic	subgroups	(each	holding	a	subset	of	the	curve's	EC	points).	In	the	second	scenario	the	points	on	the	curve
are	split	into	h	cyclic	subgroups	(partitions),	each	of	order	r	(each	subgroup	holds	equal	number	of	points).	The	order
of	entire	group	is	n	=	h	*	r	(the	number	of	subgroups,	multiplied	by	the	number	of	points	in	each	subgroup).	The
number	of	subgroups	h	holding	the	EC	points	is	called	cofactor.

2 3

Elliptic	Curve	Cryptography	(ECC)

114

https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Point_at_infinity
https://en.wikipedia.org/wiki/Subgroup

The	cofactor	is	typically	expressed	by	the	following	formula:

h	=	n	/	r

where

n	is	the	order	of	the	curve	(the	number	of	all	its	points)
h	is	the	curve	cofactor	(the	number	of	non-overlapping	subgroups	of	points,	which	together	hold	all	curve
points)
r	is	the	order	of	the	subgroups	(the	number	of	points	in	each	subgroup,	including	the	infinity	point	for	each
subgroup)

In	other	words,	the	points	over	an	elliptic	curve	stay	in	one	or	several	non-overlapping	subsets,	called	cyclic
subgroups.	The	number	of	subgroups	is	called	"cofactor".	The	total	number	of	points	in	all	subgroups	is	called
"order"	of	the	curve	and	is	usually	denoted	by	n.	If	the	curve	consists	of	only	one	cyclic	subgroup,	its	cofactor	h	=
1.	If	the	curve	consists	of	several	subgroups,	its	cofactor	>	1.

Example	of	elliptic	curve	having	cofactor	=	1	is		secp256k1	.
Example	of	elliptic	curve	having	cofactor	=	8	is		Curve25519	.
Example	of	elliptic	curve	having	cofactor	=	4	is		Curve448	.

The	"Generator"	Point	in	ECC
For	the	elliptic	curves	over	finite	fields,	the	ECC	cryptosystems	define	a	special	pre-defined	(constant)	EC	point	called
generator	point	G	(base	point),	which	can	generate	any	other	point	in	its	subgroup	over	the	elliptic	curve	by
multiplying	G	by	some	integer	in	the	range	[0...r].	The	number	r	is	called	"order"	of	the	cyclic	subgroup	(the	total
number	of	all	points	in	the	subgroup).

For	curves	with	cofactor	=	1	there	is	only	one	subgroup	and	the	order	n	of	the	curve	(the	total	number	of	different
points	over	the	curve,	including	the	infinity)	is	equal	to	the	number	r.

When	G	and	n	are	carefully	selected,	and	the	cofactor	=	1,	all	possible	EC	points	on	the	curve	(including	the	special
point	infinity)	can	be	generated	from	the	generator	G	by	multiplying	it	by	integer	in	the	range	[1...n].	This	integer	n	is
known	as	"order	of	the	curve".

It	is	important	to	know	that	the	order	r	of	the	subgroup,	obtained	from	certain	EC	generator	point	G	(which	may	be
different	from	the	order	of	the	curve)	defines	the	total	number	of	all	possible	private	keys	for	this	curve:	r	=	n	/	h
(curve	order,	divided	by	the	curve	cofactor).	Cryptographers	select	carefully	the	elliptic	curve	domain	parameters
(curve	equation,	generator	point,	cofactor,	etc.)	to	ensure	that	the	key	space	is	large	enough	for	certain
cryptographic	strength.

To	summarize,	in	the	ECC	cryptography	the	EC	points,	together	with	the	generator	point	G	form	cyclic	groups	(or
cyclic	subgroups),	which	means	that	a	number	r	exists	(r	>	1),	such	that	r	*	G	=	0	*	G	=	infinity	and	all	points	in	the
subgroup	can	be	obtained	by	multiplying	G	by	integer	in	the	range	[1...r].	The	number	r	is	called	order	of	the	group
(or	subgroup).

Elliptic	curve	subgroups	usually	have	many	generator	points,	but	cryptographers	carefully	select	one	of	them,	which
generates	the	entire	group	(or	subgroup)	and	is	suitable	for	performance	optimizations	in	the	computations.	This	is	the
generator	known	as	"G".

Elliptic	Curve	Cryptography	(ECC)

115

https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Subgroup

It	is	known	that	for	some	curves	different	generator	points	generate	subgroups	of	different	order.	More	precisely,	if	the
group	order	is	n,	for	each	prime	d	dividing	n,	there	is	a	point	Q	such	that	d	*	Q	=	infinity.	This	means	that	some
points	used	as	generators	for	the	same	curve	will	generate	smaller	subgroups	than	others.	if	the	group	is	small,	the
security	is	weak.	This	is	known	as	"small-subgroup"	attacks.	This	is	the	reason	why	cryptographers	usually	choose
the	subgroup	order	r	to	be	a	prime	number.

For	elliptic	curves	with	cofactor	h	>	1,	different	base	points	can	generate	different	subgroups	of	EC	points	on	the
curve.	By	choosing	a	certain	generator	point,	we	choose	to	operate	over	a	certain	subgroup	of	points	on	the	curve
and	most	EC	point	operations	and	ECC	crypto	algorithms	will	work	well.	Still	in	some	cases,	special	attention	should
be	given,	so	it	is	recommended	to	use	only	proven	ECC	implementations,	algorithms	and	software	packages.

Generator	Point	-	Example
At	the	above	example	(the	EC	over	finite	field	y 	≡	x 	+	7	mod	17),	if	we	take	the	point	G	=	{15,	13}	as	generator,	any
other	point	from	the	curve	can	be	obtained	by	multiplying	G	by	some	integer	in	the	range	[1...18].	Thus	the	order	of
this	EC	is	n	=	18	and	its	cofactor	h	=	1.

Note	that	the	curve	has	17	normal	EC	points	(shown	at	the	above	figures)	+	one	special	"point	at	infinity",	all	staying
in	a	single	subgroup,	and	the	curve	order	is	18	(not	17).

Note	also,	that	if	we	take	the	point	{5,	9}	as	generator,	it	will	generate	just	3	EC	points:	{5,	8},	{5,	9}	and	infinity.
Because	the	curve	order	is	not	prime	number,	different	generators	may	generate	subgroups	of	different	order.	This	is
a	good	example	why	we	should	not	"invent"	our	own	elliptic	curves	for	cryptographic	purposes	and	we	should	use
proven	curves.

Private	Key,	Public	Key	and	the	Generator	Point	in	ECC
In	the	ECC,	when	we	multiply	a	fixed	EC	point	G	(the	generator	point)	by	certain	integer	k	(k	can	be	considered	as
private	key),	we	obtain	an	EC	point	P	(its	corresponding	public	key).

Consequently,	in	ECC	we	have:

Еlliptic	curve	(EC)	over	finite	field	
G	==	generator	point	(fixed	constant,	a	base	point	on	the	EC)
k	==	private	key	(integer)
P	==	public	key	(point)

It	is	very	fast	to	calculate	P	=	k	*	G,	using	the	well-known	ECC	multiplication	algorithms	in	time	log (k),	e.g.	the
"double-and-add	algorithm".	For	256-bit	curves,	it	will	take	just	a	few	hundreds	simple	EC	operations.

It	is	extremely	slow	(considered	infeasible	for	large	k)	to	calculate	k	=	P	/	G.

This	asymmetry	(fast	multiplication	and	infeasible	slow	opposite	operation)	is	the	basis	of	the	security	strength	behind
the	ECC	cryptography,	also	known	as	the	ECDLP	problem.

Elliptic-Curve	Discrete	Logarithm	Problem	(ECDLP)
The	Elliptic	Curve	Discrete	Logarithm	Problem	(ECDLP)	in	computer	science	is	defined	as	follows:

By	given	elliptic	curve	over	finite	field	 	and	generator	point	G	on	the	curve	and	point	P	on	the	curve,	find	the
integer	k	(if	it	exists),	such	that	P	=	k	*	G

For	carefully	chosen	(by	cryptographers)	finite	fields	and	elliptic	curves,	the	ECDLP	problem	has	no	efficient
solution.

The	multiplication	of	elliptic	curve	points	in	the	group	 	is	similar	to	exponentiation	of	integers	in	the	group	ℤ 	(this
is	known	as	multiplicative	notation)	and	this	is	how	the	ECDLP	problem	is	similar	to	the	DLP	problem	(discrete
logarithm	problem).

2 3

p

2

p

p p

Elliptic	Curve	Cryptography	(ECC)

116

https://tools.ietf.org/html/rfc2785
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Double-and-add

In	the	ECC	cryptography,	many	algorithms	rely	on	the	computational	difficulty	of	the	ECDLP	problem	over
carefully	chosen	field	 	and	elliptic	curve,	for	which	no	efficient	algorithm	exists.

ECC	and	Curve	Security	Strength
Because	the	fastest	known	algorithm	to	solve	the	ECDLP	for	key	of	size	k	needs	 	steps,	this	means	that	to	achieve
a	k-bit	security	strength,	at	least	2*k-bit	curve	is	needed.	Thus	256-bit	elliptic	curves	(where	the	field	size	p	is
256-bit	number)	typically	provide	nearly	128-bit	security	strength.

In	fact,	the	strength	is	slightly	less,	because	the	order	of	the	curve	(n)	is	typically	less	than	the	fields	size	(p)	and
because	the	curve	may	have	cofactor	h	>	1	(and	subgroup	order	r	=	n	/	h,	smaller	than	n)	and	because	the	number	of
steps	is	not	exactly	 ,	but	is	0.886 ∗ .	A	precise	security	strength	estimation	for	the	most	popular	standard
elliptic	curves	is	given	here:	http://safecurves.cr.yp.to/rho.html.

For	example,	the		secp256k1		(p	=	256)	curve	provides	~	128-bit	security	(127.8	bits	to	be	precise)	and	the
	Curve448		(p	=	448)	provides	~	224-bit	security	(222.8	bits	to	be	precise).

Multiplication	of	EC	Points	-	Example	in	Python
Now,	after	all	the	concepts,	let's	write	some	code.	We	shall	use	the	Python	library		tinyec	,	which	provides	ECC
primitives,	such	as	cyclic	groups	(the		SubGroup		class),	elliptic	curves	over	finite	fields	(the		Curve		class)	and	EC
points	(the		Point		class).	First,	install	the	package		tinyec	:

pip	install	tinyec

We	shall	play	with	the	educational	curve	from	our	previous	examples	y 	≡	x 	+	7	(mod	17),	with	the	generator	point	G
=	{15,	13},	which	has	order	of	n	=	18.	We	shall	name	it		p1707	.

from	tinyec.ec	import	SubGroup,	Curve

field	=	SubGroup(p=17,	g=(15,	13),	n=18,	h=1)
curve	=	Curve(a=0,	b=7,	field=field,	name='p1707')
print('curve:',	curve)

for	k	in	range(0,	25):
				p	=	k	*	curve.g
				print(f"{k}	*	G	=	({p.x},	{p.y})")

The	above	code	demonstrates	the	EC	multiplication.	It	multiplies	the	generator	point	G	by	0,	1,	2,	...,	24.	The	output
from	the	above	program	is	as	follows:

curve:	"p1707"	=>	y^2	=	x^3	+	0x	+	7	(mod	17)
0	*	G	=	(None,	None)
1	*	G	=	(15,	13)
2	*	G	=	(2,	10)
3	*	G	=	(8,	3)
4	*	G	=	(12,	1)
5	*	G	=	(6,	6)
6	*	G	=	(5,	8)
7	*	G	=	(10,	15)
8	*	G	=	(1,	12)
9	*	G	=	(3,	0)
10	*	G	=	(1,	5)
11	*	G	=	(10,	2)
12	*	G	=	(5,	9)

p

√k

√k √k

2 3

Elliptic	Curve	Cryptography	(ECC)

117

http://safecurves.cr.yp.to/rho.html
https://github.com/alexmgr/tinyec

13	*	G	=	(6,	11)
14	*	G	=	(12,	16)
15	*	G	=	(8,	14)
16	*	G	=	(2,	7)
17	*	G	=	(15,	4)
18	*	G	=	(None,	None)
19	*	G	=	(15,	13)
20	*	G	=	(2,	10)
21	*	G	=	(8,	3)
22	*	G	=	(12,	1)
23	*	G	=	(6,	6)
24	*	G	=	(5,	8)

It	is	visible	that	0	*	G	=	infinity.	It	is	also	clearly	visible,	that	the	EC	group	is	cyclic	and	the	order	of	the	EC	group	is	n
=	18,	because	starting	from	k	=	18,	the	next	points	repeat	the	first	ones:

18	*	G	=	0	*	G	=	infinity
19	*	G	=	1	*	G	=	{15,	13}
20	*	G	=	2	*	G	=	{2,	10}
21	*	G	=	3	*	G	=	{8,	3}
etc.

The	EC	points,	generated	by	multiplying	the	generator	point	G	by	2,	3,	4,	...,	17	are	shown	on	the	figure	below:

Elliptic	Curve	Cryptography	(ECC)

118

Let's	modify	a	bit	the	above	example	and	change	the	generator	point	to	be	G'	=	{5,	9}.	This	will	change	significantly
the	output:

from	tinyec.ec	import	SubGroup,	Curve

field	=	SubGroup(p=17,	g=(5,	9),	n=18,	h=1)
curve	=	Curve(a=0,	b=7,	field=field,	name='p1707')
print('curve:',	curve)

for	k	in	range(0,	25):
				p	=	k	*	curve.g
				print(f"{k}	*	G'	=	({p.x},	{p.y})")

The	output	shows	that	the	subgroup	order	of	the	new	generator	point	is	not	18,	but	is	3.	This	is	possible,	because	18
is	not	prime.	It	is	clear	from	the	output,	that	3	*	G'	=	infinity	and	the	obtained	subgroup	order	is	3:

curve:	"p1707"	=>	y^2	=	x^3	+	0x	+	7	(mod	17)
0	*	G'	=	(None,	None)
1	*	G'	=	(5,	9)
2	*	G'	=	(5,	8)
3	*	G'	=	(None,	None)
4	*	G'	=	(5,	9)

Elliptic	Curve	Cryptography	(ECC)

119

5	*	G'	=	(5,	8)
6	*	G'	=	(None,	None)
...

The	above	example	again	confirms	that	designing	an	elliptic	curve	for	cryptography	should	be	done	by
cryptographers,	not	by	developers.	Developers	should	rely	on	well	established	crypto-standards	and	proven	crypto-
libraries.

Multiplication	of	EC	Points	-	Real-World	Example	in	Python
Now,	let's	write	a	real-world	example.	Instead	of	using	our	educational	curve		p1707		(4-5-bit	curve,	p	=	17),	we	shall
use	the	192-bit	cryptographic	curve		secp192r1		(192-bit,	p	=

6277101735386680763835789423207666416083908700390324961279).	The	below	example	is	similar	to	the
previous:

from	tinyec	import	registry

curve	=	registry.get_curve('secp192r1')
print('curve:',	curve)

for	k	in	range(0,	10):
				p	=	k	*	curve.g
				print(f"{k}	*	G	=	({p.x},	{p.y})")

print("Cofactor	=",	curve.field.h)

print('Cyclic	group	order	=',	curve.field.n)

nG	=	curve.field.n	*	curve.g
print(f"n	*	G	=	({nG.x},	{nG.y})")

The	output	is	also	similar	to	the	previous	example:

curve:	"secp192r1"	=>	y^2	=	x^3	+	6277101735386680763835789423207666416083908700390324961276
x	+	2455155546008943817740293915197451784769108058161191238065	(mod	627710173538668076383578
9423207666416083908700390324961279)
0	*	G	=	(None,	None)
1	*	G	=	(602046282375688656758213480587526111916698976636884684818,	174050332293622031404857
552280219410364023488927386650641)
2	*	G	=	(5369744403678710563432458361254544170966096384586764429448,	54292343797890710397506
54906915254128254326554272718558123)
3	*	G	=	(2915109630280678890720206779706963455590627465886103135194,	29466267115587920039806
54088990112021985937607003425539581)
4	*	G	=	(1305994880430903997305943738697779408316929565234787837114,	39818639774511503421169
87835776121688410789618551673306674)
5	*	G	=	(410283251116784874018993562136566870110676706936762660240,	120665467489982524668820
5669651974202006189255452737318561)
6	*	G	=	(4008504146453526025173196900303594155799995627910231899946,	32637593013051769069908
06636587838100022690095020155627760)
7	*	G	=	(3473339081378406123852871299395262476289672479707038350589,	21527131769066036042008
42901176476029776544337891569565621)
8	*	G	=	(1167950611014894512313033362696697441497340081390841490910,	40021779061112151271484
83369584652296488769677804145538752)
9	*	G	=	(3176317450453705650283775811228493626776489433309636475023,	44601893774669384766793

Elliptic	Curve	Cryptography	(ECC)

120

803854980115179612118075017062201)
Cofactor	=	1
Cyclic	group	order	=	6277101735386680763835789423176059013767194773182842284081
n	*	G	=	(None,	None)

The	curve		secp192r1		uses	a	cyclic	group	of	very	large	order	n	=
6277101735386680763835789423176059013767194773182842284081	(prime	number)	with	cofactor	h	=	1,	and	as
we	can	expect,	n	*	G	=	infinity,	just	like	at	the	previous	example	with	our	educational	curve.

Now,	let's	generate	a	random	private	key		privKey		(integer	in	the	range	[0...n-1])	and	its	corresponding	public	key
	pubKey	=	privKey	*	G	:

from	tinyec	import	registry
import	secrets

curve	=	registry.get_curve('secp192r1')

privKey	=	secrets.randbelow(curve.field.n)
pubKey	=	privKey	*	curve.g
print("private	key:",	privKey)
print("public	key:",	pubKey)

The	above	code	will	produce	output	like	this:

private	key:	4225655318977962031264230130242180748818603147467615868902
public	key:	(5396030834456770190396776530938374882273836179487834152291,	3422160588166914010
077732710830109086004758012634997793937)	on	"secp192r1"	=>	y^2	=	x^3	+	627710173538668076383
5789423207666416083908700390324961276x	+	245515554600894381774029391519745178476910805816119
1238065	(mod	6277101735386680763835789423207666416083908700390324961279)

Later	we	shall	use	such	pairs	of	ECC	keys	{private	key,	public	key}	to	encrypt	data,	sign	messages	and	verify
signatures.

Note	that	in	real	projects,	192-bit	curves	are	considered	weak,	so	256-bit	curves	are	recommended	(or	more	bits),
where	the	keys	are	also	256-bits	(or	respectively	more).	We	use	192-bit	curve	in	the	above	example	just	to	make	the
sample	output	smaller.

Public	Key	Compression	in	the	Elliptic	Key	Cryptosystems
Elliptic	curves	over	finite	fields	 	(in	the	Weierstrass	form)	have	at	most	2	points	per	y	coordinate	(odd	x	and	even
x).	This	property	comes	from	the	nature	of	the	elliptic	curve	equation	and	is	illustrated	at	the	below	graph:

p

Elliptic	Curve	Cryptography	(ECC)

121

Due	to	this	property,	an	elliptic	curve	point	(and	respectively	an	ECC	public	key)	P	{x,	y}	can	be	compressed	as	C	{x,
odd/even).	This	means	to	erase	the	y	coordinate	from	the	point	and	represent	it	as	1	bit	(odd	y	or	even	y).

Compressed	EC	point	is	an	EC	point	{x,	y}	represented	in	its	shorter	form	{x,	odd	/	even}.	ECC	public	keys	are	EC
points,	so	they	can	also	be	compressed	in	the	same	way.

To	decompress	a	point,	we	can	calculate	its	two	possible	y	coordinates	by	the	formulas:

y 	=	mod_sqrt(x 	+	ax	+	b,	p)
y 	=	p	-	mod_sqrt(x 	+	ax	+	b,	p)

Then	we	take	the	odd	or	even	from	the	above	coordinates	(according	to	the	additional	parity	bit	in	the	compressed
representation).

The	modular	square	root	(mod_sqrt)	can	be	calculated	using	the	Tonelli–Shanks	algorithm.

Let's	take	an	example:	at	the	elliptic	curve	y 	≡	x 	+	7	(mod	17)	the	point	P	{10,	15}	can	be	compressed	as	C	{10,
odd}.	For	decompression,	we	first	calculate	the	two	possible	y	coordinates	for	x	=	10	using	the	above	formulas:	y 	=
2	and	y 	=	15.	Then	we	choose	the	odd	one:	y	=	15.	The	decompressed	point	is	{10,	15}.

Compressing	a	EC	Point	/	Public	Key	-	Example	in	Python

1
3

2
3

2 3

1
2

Elliptic	Curve	Cryptography	(ECC)

122

https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm

The	code	below	implements	public	key	compression	and	decompression	in	Python.	It	uses	a	library	called
	nummaster		for	the	"modular	square	root"	function,	which	is	unavailable	in	Python.	First	install	the		nummaster	
package:

pip	install	nummaster

Now	implement	the	EC	point	compression	and	decompression	functions	in	Python:

from	nummaster.basic	import	sqrtmod

def	compress_point(point):
				return	(point[0],	point[1]	%	2)

def	uncompress_point(compressed_point,	p,	a,	b):
				x,	is_odd	=	compressed_point
				y	=	sqrtmod(pow(x,	3,	p)	+	a	*	x	+	b,	p)
				if	bool(is_odd)	==	bool(y	&	1):
								return	(x,	y)
				return	(x,	p	-	y)

Finally,	compress	and	decompress	the	point	{10,	15}	on	the	curve	y 	≡	x 	+	7	(mod	17),	just	as	an	example:

p,	a,	b	=	17,	0,	7
point	=	(10,	15)
print(f"original	point	=	{point}")
compressed_p	=	compress_point(point)
print(f"compressed	=	{compressed_p}")
restored_p	=	uncompress_point(compressed_p,	p,	a,	b)
print(f"uncompressed	=	{restored_p}")

The	output	of	the	above	code	is:

original	point	=	(10,	15)
compressed	=	(10,	1)
uncompressed	=	(10,	15)

Elliptic	Curve	Domain	Parameters	for	ECC
ECC	elliptic	curves	are	described	by	a	set	of	elliptic	curve	domain	parameters,	such	as	the	curve	equation
parameters,	the	field	parameters	and	the	generator	point	coordinates.	These	parameters	are	specified	in
cryptography	standards,	such	as:

SEC	2:	Recommended	Elliptic	Curve	Domain	Parameters
NIST	FIPS	PUB	186-4	Digital	Signature	Standard	(DSS)
Brainpool	ECC	Standard	(RFC-5639)

These	standards	define	the	parameters	for	a	set	of	named	curves,	such	as		secp256k1	,		P-521		and
	brainpoolP512t1	.	The	elliptic	curves	over	finite	fields,	described	in	these	crypto	standards	are	well	researched	and

analysed	by	cryptographers	and	are	considered	to	have	certain	security	strength,	also	described	in	these	standards.

Some	cryptographers	(like	Daniel	Bernstein)	believe	that	most	of	the	curves,	described	in	the	official	crypto-standards
are	"unsafe"	and	define	their	own	crypto-standards,	which	consider	the	ECC	security	in	much	broader	level.

The	Bernstein's	SafeCurves	standard	lists	the	curves,	which	are	safe	according	to	a	set	of	ECC	security
requirements.	The	standard	is	available	at	https://safecurves.cr.yp.to.

2 3

Elliptic	Curve	Cryptography	(ECC)

123

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Domain_parameters
http://www.secg.org/sec2-v2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc5639
https://en.wikipedia.org/wiki/Daniel_J._Bernstein
https://safecurves.cr.yp.to
https://safecurves.cr.yp.to

Choosing	an	Elliptic	Curve	for	ECC
To	use	ECC	all	communicating	parties	should	agree	on	the	EC	domain	parameters	(all	the	elements	defining	the
elliptic	curve).	It	is	highly	recommended	to	use	a	named	curve	from	the	above	standards	with	at	least	256-bit
modulus.	Standard	curves	are	well	studied	by	cryptographers	to	guarantee	their	security	strength.

Don't	use	own	elliptic	curve	(with	non-standard	domain	parameters),	unless	you	are	experienced	cryptographer	and
you	know	very	well	what	are	you	doing!	Many	curves	have	weaknesses,	which	make	the	ECDLP	problem	not	so
difficult	and	compromise	the	security.	If	you	are	afraid	of	backdoored	curves,	use	a	standard	safe	curve	from	the
SafeCurves	list.

Named	Curves	-	Example
In	ECC	cryptography,	elliptic	curves	over	the	finite	fields	are	used,	where	the	modulus	p	and	the	order	n	are	very
large	integers	(n	is	usually	prime	number),	e.g.	256-bit	number.	The	finite	field	of	the	curve	is	of	square	form	of	size
p	x	p,	which	is	incredibly	large,	and	all	possible	EC	points	on	the	curve	(the	order	of	the	curve	n)	is	also	a	very	big
integer,	e.g.	256-bit.	For	example,	the	domain	parameters	for	the	curve		secp256k1		(the	Bitcoin	curve)	are	defined
as	follows:

p	(modulus)	=		0xFFFEFFFFFC2F	
n	(order;	size;	the	count	of	all	possible	EC	points)	=
	0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141	

a	(the	constant	"a"	in	y^2	≡	x^3	+	a*x	+	b	(mod	p))	=
	0x00	

b	(the	constant	"b"	in	y^2	≡	x^3	+	a*x	+	b	(mod	p))	=
	0x0007	

g	(the	curve	generator	point	G	{x,	y})	=
(0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798	,

	0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)

h	(cofactor,	typically	1)	=	01

We	already	know	that	a	256-bit	curve	(which	means	that	p	and	n	are	256-bit	numbers)	provides	128-bit	security
strength,	which	means	that	to	find	the	private	key	from	the	public	key	or	signature,	the	best	known	non-quantum
algorithm	will	take	approximately	2 	operations.	The	above-defined	ECC	curve		secp256k1		has	128-bit	strength.

Python	Examples	with	the	"secp256k1"	Curve
Now	let's	put	in	actin	the	above	domain	parameters	for	the		secp256k1		curve.	Let's	define	the	EC	and	calculate	the

public	key	for	certain	private	key:

from	tinyec.ec	import	SubGroup,	Curve

#	Domain	parameters	for	the	`secp256k1`	curve
#	(as	defined	in	http://www.secg.org/sec2-v2.pdf)
name	=	'secp256k1'
p	=	0xfffefffffc2f
n	=	0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
a	=	0x00
b	=	0x0007
g	=	(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
					0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8)
h	=	1
curve	=	Curve(a,	b,	SubGroup(p,	g,	n,	h),	name)
print('curve:',	curve)

128

Elliptic	Curve	Cryptography	(ECC)

124

https://safecurves.cr.yp.to

privKey	=	int('0x51897b64e85c3f714bba707e867914295a1377a7463a9dae8ea6a8b914246319',	16)
print('privKey:',	hex(privKey)[2:])

pubKey	=	curve.g	*	privKey
pubKeyCompressed	=	'0'	+	str(2	+	pubKey.y	%	2)	+	str(hex(pubKey.x)[2:])
print('pubKey:',	pubKeyCompressed)

The	above	code	defines	the		secp256k1		curve	through	its	domain	parameters	and	calculates	a	public	key	by	given
private	key.	This	is	done	by	multiplying	the	curve	generator	G	by	the	private	key.	The	result	is	correct,	like	it	is	visible
from	the	program	output:

curve:	"secp256k1"	=>	y^2	=	x^3	+	0x	+	7	(mod	1157920892373161954235709850086879078532699846
65640564039457584007908834671663)
privKey:	51897b64e85c3f714bba707e867914295a1377a7463a9dae8ea6a8b914246319
pubKey:	02f54ba86dc1ccb5bed0224d23f01ed87e4a443c47fc690d7797a13d41d2340e1a

The	public	key	is	compressed	and	encoded	in	the	standard	format	(encode	the	y	coordinate	as	prefix		02		or		03).

Edwards	Curves
Elliptic	curves	in	the	elliptic	curve	cryptography	(ECC)	may	be	presented	in	several	forms	(representations),	which	are
proven	to	be	birationally	equivalent	(isomorphic):

Weierstrass	form	of	elliptic	curve:

y 	=	x 	+	ax	+	b
Example	Weierstrass	curve	used	in	ECC	is		secp256k1	,	which	has	the	form	y 	=	x 	+	7

Montgomery	form	of	elliptic	curve:

By 	=	x 	+	Ax 	+	x
Example	Montgomery	curve	used	in	ECC	is		Curve25519	,	which	has	the	form	y 	=	x 	+	486662x 	+	x

Edwards	form	of	elliptic	curve:

x 	+	y 	=	1	+	dx y
Example	Edwards	curve	used	in	ECC	is		Curve448	,	which	has	the	form	x 	+	y 	=	1	-	39081x y

For	performance	reasons	elliptic	curve	cryptography	(ECC)	sometimes	uses	Edwards	curves,	which	are	elliptic
curves	in	the	following	form:

x 	+	y 	=	1	+	dx y

For	example,	if	d	=	300,	the	Edwards	curve	x 	+	y 	=	1	+	300x y 	looks	like	this:

2 3
2 3

2 3 2
2 3 2

2 2 2 2
2 2 2 2

2 2 2 2

2 2 2 2

Elliptic	Curve	Cryptography	(ECC)

125

https://en.wikipedia.org/wiki/Edwards_curve

Every	Edwards	curve	is	birationally	equivalent	to	an	elliptic	curve	in	Weierstrass	form	(y 	=	x 	+	ax	+	b)	and	thus
has	the	same	properties	like	the	classical	elliptic	curves.

Edwards	curves	over	a	finite	prime	field	 	(where	p	is	large	prime	number)	provide	fast	integer	to	EC	point
multiplication,	which	has	similar	cryptographic	properties	like	the	classical	elliptic	curves,	and	the	ECDLP	problem	has
the	same	computational	difficulty,	suitable	for	cryptographic	purposes.

Examples	of	well-known	cryptographic	elliptic	Edwards	curves	over	finite	prime	fields	are:	Curve1174	(251-bit),
Curve25519	(255-bit),	Curve383187	(383-bit),	Curve41417	(414-bit),	Curve448	(448-bit),	E-521	(521-bit)	and	others.

Curve25519,	X25519	and	Ed25519
With	carefully	selected	curve	parameters,	the	Edwards	curves	over	finite	fields	can	implement	ECC	cryptosystems
capable	to	provide	ECDH	key	agreement	schemes,	digital	signatures	and	hybrid	encryption	schemes,	with	very
high	performance.

For	example,	the		Curve25519		is	the	Edwards	curve,	defined	by	the	following	elliptic	curve	equation	in	Montgomery
form:

y 	=	x 	+	486662x 	+	x

2 3

p

2 3 2

255

Elliptic	Curve	Cryptography	(ECC)

126

https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Montgomery_curve

over	the	finite	prime	field	 ,	where	p	=	2 	-	19	(the	curve	is	255-bit).

In	fact,	the	above	equation	does	not	match	directly	the	Edwards	curve	equation,	but	it	is	proven	to	be	birationally
equivalent	to	the	following	twisted	Edwards	curve	(known	as	edwards25519):

-x 	+	y 	=	1	+
37095705934669439343138083508754565189542113879843219016388785533085940283555x y

The	elliptic	curve	Curve25519	consists	of	all	points	{x,	y}	with	integer	coordinates,	defined	by	the	modular	equation:

y 	≡	x 	+	486662x 	+	x	(mod	2 	-	19)

The	above	equation	has	its	equivalent	in	the	classical	Weierstrass	form	for	the	elliptic	curves	(y 	=	x 	+	ax	+	b),	but
the	above	form	is	designed	especially	for	speed	optimizations.

The	Curve25519	is	carefully	engineered,	by	a	team	of	cryptographers,	led	by	Daniel	Bernstein,	at	several	levels	of
design	and	implementation	to	achieve	very	high	speeds	without	compromising	security.

The	Curve25519	has	order	(in	its	underlying	cyclic	group)	n	=	2 	+	0x14def9dea2f79cd65812631a5cf5d3ed	and
cofactor	h	=	8	and	provides	125.8-bit	security	strength	(it	is	sometimes	referred	as	~	128-bit	security).	The	private
keys	for	the	Curve25519	are	251	bits	and	are	usually	encoded	as	256-bit	integers	(32	bytes,	64	hex	digits).	The
public	keys	are	typically	encoded	also	as	256-bit	integers	(255-bit	y-coordinate	+	1-bit	x-coordinate)	and	this	is	very
convenient	for	developers.

Based	on	the	Curve25519	an	ECDH	function	is	derived,	called	X25519	(used	for	elliptic-key	Diffie–Hellman	key
agreement	schemes)	and	fast	digital	signature	scheme	is	derived,	called	Ed25519,	based	on	the	the	EdDSA
algorithm.	These	schemes	are	very	fast,	because	they	involve	multiplications	and	other	simple	operations	with	small
integers	(mostly	32-bit	arithmetic),	which	can	be	efficiently	implemented	in	the	modern	microprocessors	(CPUs).	Note
that	X25519	and	Ed25519	use	different	encodings	for	the	EC	points,	so	they	are	not	directly	compatible	and
require	conversion	if	you	want	to	use	the	same	public-private	key	pairs.

Curve448,	X448	and	Ed448
The		Curve448		(Curve448-Goldilocks)	is	an	untwisted	Edwards	curve,	defined	by	the	equation:

x 	+	y 	=	1	-	39081x y

over	the	finite	prime	field	 ,	where	p	=	2 	-	2 	-	1.	It	has	order	of	n	=	2 	-
0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d	and	cofactor	h	=	4.	Like	any	other	Edwards
curve,	the	Curve448	has	equivalent	in	the	Weierstrass	form	(y 	=	x 	+	ax	+	b),	but	the	above	Edwards	form
provides	significant	optimizations	in	the	EC	point	calculations	and	improved	performance.

The	Curve448	provides	~	224-bit	security	level	(more	precisely	222.8-bits).	The	private	keys	for	the	Curve448	are
446	bits	and	are	typically	encoded	as	448-bit	integers	(56	bytes,	112	hex	digits).	The	public	keys	are	also	encoded
as	448-bit	integers.

The	Curve448	is	suitable	for	ECDH	key	agreement	(ECDH	function,	known	as	X448)	and	for	fast	digital	signatures
(EdDSA	algorithm,	known	as	Ed448	or	edwards448).	Note	that	X448	and	Ed448	use	different	encodings	for	the
EC	points,	so	they	are	not	directly	compatible	and	require	conversion	if	you	want	to	use	the	same	public-private	key
pairs.

Curve25519	or	Curve448?
Prefer	Curve448	to	Curve25519	when	your	application	needs	a	higher	level	of	security,	but	have	in	mind	that
Curve448	is	about	3	times	slower	than	Curve25519	and	uses	longer	key	length	and	signature	length.

Prefer	Curve25519	to	Curve448	when	you	need	better	performance	and	smaller	keys	and	signatures.

Learn	more	about	the	Curve25519	and	Curve448	from	the	technical	perspective	from:

p
255

2 2
2 2

2 3 2 255

2 3

252

2 2 2 2

p
448 224 446

2 3

Elliptic	Curve	Cryptography	(ECC)

127

http://safecurves.cr.yp.to/rho.html
https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/Curve448
http://safecurves.cr.yp.to/rho.html
https://tools.ietf.org/html/rfc7748#section-5
https://tools.ietf.org/html/rfc8032#section-5.2

RFC	7748	-	Elliptic	Curves	for	Security	-	the	Internet	technical	standard	for	implementing	the	X25519	and	X448
key	exchange	protocols.
RFC	8032	-	Edwards-Curve	Digital	Signature	Algorithm	(EdDSA)	-	the	Internet	technical	standard	for
implementing	the	the	Ed25519	and	EdDSA-Ed448	signature	schemes.

In	the	general	case,	have	in	mind	that	Curve25519	is	faster	than	secp256k1	and	the	other	256-bit	standard	NIST
curves	and	is	considered	more	secure,	so	it	is	the	recommended	choice	for	~	128-bit	security.	Similarly,	the	Curve448
has	better	performance	than	the	classical	curves	with	similar	key	length,	so	it	is	the	recommended	curve	for	~	224-bit
security.

Curve25519	-	Example	in	Python
To	demonstrate	the	elliptic	curve	Curve25519	in	practice,	we	shall	first	install	the		pynacl		crypto	library	for	Python:

pip	install	pynacl

The	Python	binding	to	the	Networking	and	Cryptography	(NaCl)	library	(PyNaCl)	implements	many	modern
cryptographic	algorithms,	including	the	EC	point	arithmetic	over	the	Curve25519	and	Ed25519	signatures.

Next,	generate	a	random	252-bit	private	key	and	its	corresponding	public	key	(EC	point)	on	the	Curve25519	(both
keys	will	be	encoded	internally	as	256-bit	integers):

from	nacl.public	import	PrivateKey
import	binascii

privKey	=	PrivateKey.generate()
pubKey	=	privKey.public_key

print("privKey:",	binascii.hexlify(bytes(privKey)))
print("pubKey:	",	binascii.hexlify(bytes(pubKey)))

The	sample	output	from	the	above	code	shows	that	both	the	public	and	the	private	(secret)	keys	on	the	Curve25519
are	encoded	as	256-bit	integers	(64	hex	digits,	32	bytes)	and	this	simplifies	the	developers:

privKey:	b'8175f7cd524a59b6efbd447985ce5d97c546b319521ff236203970e50052c641'
pubKey:		b'cf97a96568fee4ddb232f617fd5b9df2d2e5b90e68ba7f6d5129ea92d7d8f95e'

In	fact,	different	crypto	libraries	may	use	different	key	encodings	and	typically	X25519	ECDH	keys	are	encoded
differently	than	Ed25519	keys	(Montgomery	curve	coordinates	vs.	twisted	Edwards	curve	coordinates).

Elliptic	Curve	Cryptography	(ECC)

128

https://tools.ietf.org/html/rfc7748
https://tools.ietf.org/html/rfc8032
https://github.com/pyca/pynacl
https://pynacl.readthedocs.io

ECDH	Key	Exchange	(Elliptic	Curve	Diffie–Hellman
Key	Exchange)
The	ECDH	(Elliptic	Curve	Diffie–Hellman	Key	Exchange)	is	anonymous	key	agreement	scheme,	which	allows	two
parties,	each	having	an	elliptic-curve	public–private	key	pair,	to	establish	a	shared	secret	over	an	insecure	channel.
ECDH	is	very	similar	to	the	classical	DHKE	(Diffie–Hellman	Key	Exchange)	algorithm,	but	it	uses	ECC	point
multiplication	instead	of	modular	exponentiations.	ECDH	is	based	on	the	following	property	of	EC	points:

(a	*	G)	*	b	=	(b	*	G)	*	a

If	we	have	two	secret	numbers	a	and	b	(two	private	keys,	belonging	to	Alice	and	Bob)	and	an	ECC	elliptic	curve
with	generator	point	G,	we	can	exchange	over	an	insecure	channel	the	values	(a	*	G)	and	(b	*	G)	(the	public	keys	of
Alice	and	Bob)	and	then	we	can	derive	a	shared	secret:	secret	=	(a	*	G)	*	b	=	(b	*	G)	*	a.	Pretty	simple.	The	above
equation	takes	the	following	form:

alicePubKey	*	bobPrivKey	=	bobPubKey	*	alicePrivKey	=	secret

The	ECDH	algorithm	(Elliptic	Curve	Diffie–Hellman	Key	Exchange)	is	trivial:

1.	 Alice	generates	a	random	ECC	key	pair:	{alicePrivKey,	alicePubKey	=	alicePrivKey	*	G}
2.	 Bob	generates	a	random	ECC	key	pair:	{bobPrivKey,	bobPubKey	=	bobPrivKey	*	G}
3.	 Alice	and	Bob	exchange	their	public	keys	through	the	insecure	channel	(e.g.	over	Internet)
4.	 Alice	calculates	sharedKey	=	bobPubKey	*	alicePrivKey
5.	 Bob	calculates	sharedKey	=	alicePubKey	*	bobPrivKey
6.	 Now	both	Alice	and	Bob	have	the	same	sharedKey	==	bobPubKey	*	alicePrivKey	==	alicePubKey	*	bobPrivKey

In	the	next	section,	we	shall	implement	the	ECDH	algorithm	and	demonstrate	it	with	code	example.

ECDH	Key	Exchange

129

https://en.wikipedia.org/wiki/Elliptic-curve_Diffie–Hellman

ECDH	Key	Exchange	-	Examples	in	Python
Now	let's	implement	the	ECDH	algorithm	(Elliptic	Curve	Diffie–Hellman	Key	Exchange)	in	Python.

We	shall	use	the		tinyec		library	for	ECC	in	Python:

pip	install	tinyec

Now,	let's	generate	two	public-private	key	pairs,	exchange	the	public	keys	and	calculate	the	shared	secret:

from	tinyec	import	registry
import	secrets

def	compress(pubKey):
				return	hex(pubKey.x)	+	hex(pubKey.y	%	2)[2:]

curve	=	registry.get_curve('brainpoolP256r1')

alicePrivKey	=	secrets.randbelow(curve.field.n)
alicePubKey	=	alicePrivKey	*	curve.g
print("Alice	public	key:",	compress(alicePubKey))

bobPrivKey	=	secrets.randbelow(curve.field.n)
bobPubKey	=	bobPrivKey	*	curve.g
print("Bob	public	key:",	compress(bobPubKey))

print("Now	exchange	the	public	keys	(e.g.	through	Internet)")

aliceSharedKey	=	alicePrivKey	*	bobPubKey
print("Alice	shared	key:",	compress(aliceSharedKey))

bobSharedKey	=	bobPrivKey	*	alicePubKey
print("Bob	shared	key:",	compress(bobSharedKey))

print("Equal	shared	keys:",	aliceSharedKey	==	bobSharedKey)

The	elliptic	curve	used	for	the	ECDH	calculations	is	256-bit	named	curve		brainpoolP256r1	.	The	private	keys	are
256-bit	(64	hex	digits)	and	are	generated	randomly.	The	public	keys	will	be	257	bits	(65	hex	digits),	due	to	key
compression.

The	output	of	the	above	code	looks	like	this:

Alice	public	key:	0x66c808e6b5be6d6620934bc6ffa2b8b47f9786c002bfb06d53a0c27535641a5d1
Bob	public	key:	0x7d15195432d1ac7f38aeb054d07d9b2e1faa913b78ad04d5efdd4a1ee8d9a3191
Now	exchange	the	public	keys	(e.g.	through	Internet)
Alice	shared	key:	0x90f5a1cf2ed1dbb0322178df6bb0dd72c541884618b2989a3e5e663198667a621
Bob	shared	key:	0x90f5a1cf2ed1dbb0322178df6bb0dd72c541884618b2989a3e5e663198667a621
Equal	shared	keys:	True

Due	to	randomization,	if	you	run	the	above	code,	the	keys	will	be	different,	but	the	calculated	shared	secret	for
Alice	and	Bob	at	the	end	will	always	be	the	same.	The	generated	shared	secret	is	a	257-bit	integer	(compressed	EC
point	for	256-bit	curve,	encoded	as	65	hex	digits).

ECDH	Key	Exchange	-	Examples

130

ECDH	Key	Exchange	-	Examples

131

Exercises:	ECDH	Key	Exchange
...

TODO

...

Exercises:	ECDH	Key	Exchange

132

ECC-Based	Encryption	/	Decryption
Assume	we	have	a	ECC	private-public	key	pair.	We	want	to	encrypt	and	decrypt	data	using	these	keys.	By
definition,	asymmetric	encryption	works	as	follows:	if	we	encrypt	data	by	a	private	key,	we	will	be	able	to	decrypt
the	ciphertext	later	by	the	corresponding	public	key:

The	above	process	can	be	directly	applied	for	the	RSA	cryptosystem,	but	not	for	the	ECC.	The	elliptic	curve
cryptography	(ECC)	does	not	directly	provide	encryption	method.	Instead,	we	can	design	a	hybrid	encryption
scheme	by	using	the	ECDH	(Elliptic	Curve	Diffie–Hellman)	key	exchange	scheme	to	derive	a	shared	secret	key	for
symmetric	data	encryption	and	decryption.	Let's	get	into	details	how	to	do	this.

ECC-Based	Secret	Key	Derivation	(using	ECDH)
Assume	we	have	a	cryptographic	elliptic	curve	over	finite	field,	along	with	its	generator	point	G.	We	can	use	the
following	two	functions	to	calculate	a	shared	a	secret	key	for	encryption	and	decryption	(derived	from	the	ECDH
scheme):

calculateEncryptionKey(pubKey)	-->	(sharedECCKey,	ciphertextPubKey)
1.	 Generate	ciphertextPrivKey	=	new	random	private	key.
2.	 Calculate	ciphertextPubKey	=	ciphertextPrivKey	*	G.
3.	 Calculate	the	ECDH	shared	secret:	sharedECCKey	=	pubKey	*	ciphertextPrivKey.
4.	 Return	both	the	sharedECCKey	+	ciphertextPubKey.	Use	the	sharedECCKey	for	symmetric	encryption.

Use	the	randomly	generated	ciphertextPubKey	to	calculate	the	decryption	key	later.
calculateDecryptionKey(privKey,	ciphertextPubKey)	-->	sharedECCKey
1.	 Calculate	the	the	ECDH	shared	secret:	sharedECCKey	=	ciphertextPubKey	*	privKey.
2.	 Return	the	sharedECCKey	and	use	it	for	the	decryption.

The	above	calculations	use	the	same	math,	like	the	ECDH	algorithm	(see	the	previous	section).	Recall	that	EC	points
have	the	following	property:

(a	*	G)	*	b	=	(b	*	G)	*	a

Now,	assume	that	a	=	privKey,	a	*	G	=	pubKey,	b	=	ciphertextPrivKey,	b	*	G	=	ciphertextPubKey.

The	above	equation	takes	the	following	form:

ECC	Encryption	/	Decryption

133

pubKey	*	ciphertextPrivKey	=	ciphertextPubKey	*	privKey	=	sharedECCKey

This	is	what	exactly	the	above	two	functions	calculate,	directly	following	the	ECDH	key	agreement	scheme.

ECC-Based	Secret	Key	Derivation	-	Example	in	Python
The	below	Python	code	uses	the		tinyec		library	to	generate	a	ECC	private-public	key	pair	(based	on	the
	brainpoolP256r1		curve)	and	then	derive	a	secret	key	(for	encryption)	from	the	ECC	public	key	and	later	derive
the	same	secret	key	(for	decryption)	from	the	private	key	and	the	generated	earlier	ciphertext	public	key:

from	tinyec	import	registry
import	secrets

curve	=	registry.get_curve('brainpoolP256r1')

def	compress_point(point):
				return	hex(point.x)	+	hex(point.y	%	2)[2:]

def	ecc_calc_encryption_keys(pubKey):
				ciphertextPrivKey	=	secrets.randbelow(curve.field.n)
				ciphertextPubKey	=	ciphertextPrivKey	*	curve.g
				sharedECCKey	=	pubKey	*	ciphertextPrivKey
				return	(sharedECCKey,	ciphertextPubKey)

def	ecc_calc_decryption_key(privKey,	ciphertextPubKey):
				sharedECCKey	=	ciphertextPubKey	*	privKey
				return	sharedECCKey

privKey	=	secrets.randbelow(curve.field.n)
pubKey	=	privKey	*	curve.g
print("private	key:",	hex(privKey))
print("public	key:",	compress_point(pubKey))

(encryptKey,	ciphertextPubKey)	=	ecc_calc_encryption_keys(pubKey)
print("ciphertext	pubKey:",	compress_point(ciphertextPubKey))
print("encryption	key:",	compress_point(encryptKey))

decryptKey	=	ecc_calc_decryption_key(privKey,	ciphertextPubKey)
print("decryption	key:",	compress_point(decryptKey))

The	code	is	pretty	simple	and	demonstrates	that	we	can	generate	a	pair	{	secret	key	+	ciphertext	public	key	}	from
given	public	key	and	later	we	can	recover	the	secret	key	from	the	pair	{	ciphertext	public	key	+	private	key	}.	The
above	code	produces	output	like	this:

private	key:	0x2e2921b4cde59cdf01e7a014a322abd530b3015085c31cb6e59502da761d29e9
public	key:	0x850d3873cf4ac50ddb54ddbd27f8225fc43bd3f4c2cc0a4f9d1f9ce15fc4eb711
ciphertext	pubKey:	0x71586f9999d3ee050005054bc681c1d96c5eb054ca15b080ba245e495627003b0
encryption	key:	0x9d13d3f8f9747669432f575731926b5ed99a6883f00146cbd3203ffa7ff8b1ae1
decryption	key:	0x9d13d3f8f9747669432f575731926b5ed99a6883f00146cbd3203ffa7ff8b1ae1

It	is	clear	that	the	encryption	key	(derived	from	the	public	key)	and	the	decryption	key	(derived	from	the
corresponding	private	key)	are	the	same.	This	is	due	to	the	above	discussed	property	of	the	ECC:		pubKey	*
ciphertextPrivKey	=	ciphertextPubKey	*	privKey	.	These	keys	will	be	used	for	encryption	and	decryption	in

ECC	Encryption	/	Decryption

134

an	integrated	encryption	scheme.	The	above	output	will	be	different	if	you	run	the	code	(due	to	the	randomness	used
to	generate		ciphertextPrivKey	,	but	the	encryption	and	decryption	keys	will	always	be	the	same	(the	ECDH
shared	secret).

ECC-Based	Hybrid	Encryption	/	Decryption	-	Example	in
Python
Once	we	have	the	secret	key,	we	can	use	it	for	symmetric	data	encryption,	using	a	symmetric	encryption	scheme
like	AES-GCM	or	ChaCha20-Poly1305.	Let's	implement	a	fully-functional	asymmetric	ECC	encryption	and
decryption	hybrid	scheme.	It	will	be	based	on	the		brainpoolP256r1		curve	and	the	AES-256-GCM	authenticated
symmetric	cipher.

We	shall	use	the		tinyec		and		pycryptodome		Python	libraries	respectively	for	ECC	calculations	and	for	the	AES

cipher:

pip	install	tinyec
pip	install	pycryptodome

Let's	examine	this	full	ECC	+	AES	hybrid	encryption	example:

from	tinyec	import	registry
from	Crypto.Cipher	import	AES
import	hashlib,	secrets,	binascii

def	encrypt_AES_GCM(msg,	secretKey):
				aesCipher	=	AES.new(secretKey,	AES.MODE_GCM)
				ciphertext,	authTag	=	aesCipher.encrypt_and_digest(msg)
				return	(ciphertext,	aesCipher.nonce,	authTag)

def	decrypt_AES_GCM(ciphertext,	nonce,	authTag,	secretKey):
				aesCipher	=	AES.new(secretKey,	AES.MODE_GCM,	nonce)
				plaintext	=	aesCipher.decrypt_and_verify(ciphertext,	authTag)
				return	plaintext

def	ecc_point_to_256_bit_key(point):
				sha	=	hashlib.sha256(int.to_bytes(point.x,	32,	'big'))
				sha.update(int.to_bytes(point.y,	32,	'big'))
				return	sha.digest()

curve	=	registry.get_curve('brainpoolP256r1')

def	encrypt_ECC(msg,	pubKey):
				ciphertextPrivKey	=	secrets.randbelow(curve.field.n)
				sharedECCKey	=	ciphertextPrivKey	*	pubKey
				secretKey	=	ecc_point_to_256_bit_key(sharedECCKey)
				ciphertext,	nonce,	authTag	=	encrypt_AES_GCM(msg,	secretKey)
				ciphertextPubKey	=	ciphertextPrivKey	*	curve.g
				return	(ciphertext,	nonce,	authTag,	ciphertextPubKey)

def	decrypt_ECC(encryptedMsg,	privKey):
				(ciphertext,	nonce,	authTag,	ciphertextPubKey)	=	encryptedMsg
				sharedECCKey	=	privKey	*	ciphertextPubKey
				secretKey	=	ecc_point_to_256_bit_key(sharedECCKey)

ECC	Encryption	/	Decryption

135

				plaintext	=	decrypt_AES_GCM(ciphertext,	nonce,	authTag,	secretKey)
				return	plaintext

msg	=	b'Text	to	be	encrypted	by	ECC	public	key	and	'	\
						b'decrypted	by	its	corresponding	ECC	private	key'
print("original	msg:",	msg)
privKey	=	secrets.randbelow(curve.field.n)
pubKey	=	privKey	*	curve.g

encryptedMsg	=	encrypt_ECC(msg,	pubKey)
encryptedMsgObj	=	{
				'ciphertext':	binascii.hexlify(encryptedMsg[0]),
				'nonce':	binascii.hexlify(encryptedMsg[1]),
				'authTag':	binascii.hexlify(encryptedMsg[2]),
				'ciphertextPubKey':	hex(encryptedMsg[3].x)	+	hex(encryptedMsg[3].y	%	2)[2:]
}
print("encrypted	msg:",	encryptedMsgObj)

decryptedMsg	=	decrypt_ECC(encryptedMsg,	privKey)
print("decrypted	msg:",	decryptedMsg)

The	above	example	starts	from	generating	an	ECC	public	and	private	key	key	pair:		pubKey		+		privKey	,	using	the
	tinyec		library.	These	keys	will	be	used	to	encrypt	the	message		msg		through	the	hybrid	encryption	scheme
(asymmetric	ECC	+	symmetric	AES)	and	to	decrypt	is	later	back	to	its	original	form.

Next,	we	encrypt		msg		by	using	the		pubKey		and	we	obtain	as	a	result	the	following	set	of	output:	{		ciphertext	,
	nonce	,		authTag	,		ciphertextPubKey		}.	The		ciphertext		is	obtained	by	the	symmetric	AES-GCM	encryption,

along	with	the		nonce		(random	AES	initialization	vector)	and		authTag		(the	MAC	code	of	the	encrypted	text,

obtained	by	the	GCM	block	mode).	Additionally,	we	obtain	a	randomly	generated		ciphertextPubKey	,	which	will	be

used	to	recover	the	AES	symmetric	key	during	the	decryption	(using	the	ECDH	key	agreement	scheme,	as	it	was
show	before).

To	decrypt	the	encrypted	message,	we	use	the	data	produced	during	the	encryption	{		ciphertext	,		nonce	,
	authTag	,		ciphertextPubKey		},	along	with	the	decryption		privateKey	.	The	result	is	the	decrypted	plaintext

message.	We	use	authenticated	encryption	(GCM	block	mode),	so	if	the	decryption	key	or	some	other	parameter	is
incorrect,	the	decryption	will	fail	with	an	exception.

Internally,	the		encrypt_ECC(msg,	pubKey)		function	first	generates	an	ECC	key-pair	for	the	ciphertext	and
calculates	the	symmetric	encryption	shared	ECC	key		sharedECCKey	=	ciphertextPrivKey	*	pubKey	.	This	key	is

an	EC	point,	so	it	is	then	transformed	to	256-bit	AES	secret	key	(integer)	though	hashing	the	point's		x		and		y	
coordinates.	Finally,	the	AES-256-GCM	cipher	(from		pycryptodome)	encrypts	the	message	by	the	256-bit	shared
secret	key		secretKey		and	produces	as	output		ciphertext		+		nonce		+		authTag	.

The		decrypt_ECC(encryptedMsg{ciphertext,	nonce,	authTag,	ciphertextPubKey},	privKey)		function

internally	first	calculates	the	symmetric	encryption	shared	ECC	key		sharedECCKey	=	privKey	*

ciphertextPubKey	.	It	is	an	EC	point,	so	it	should	be	first	transformed	to	256-bit	AES	secret	key	though	hashing	the
point's		x		and		y		coordinates.	Then	the	AES-256-GCM	cipher	is	used	to	decrypt	the		ciphertext		+		nonce		+
	authTag		by	the	256-bit	shared	secret	key		secretKey	.	The	produced	output	is	the	original	plaintext	message	(or	an

exception	in	case	of	incorrect	decryption	key	or	unmatching		authTag).

The	output	from	the	above	code	looks	like	this:

original	msg:	b'Text	to	be	encrypted	by	ECC	public	key	and	decrypted	by	its	corresponding	EC

ECC	Encryption	/	Decryption

136

C	private	key'
encrypted	msg:	{'ciphertext':	b'b5953b3082fcefdbde91dd3c03cf83dde0822c19be6ae906a634db651152
95e7cbcd7a1a492d69ba5be91990c70d8df9dc84360cf554f155ef81ce1f0ad44bd9fdabbc5f960517089262b339
0e61b37610012bee4e6bcae335',	'nonce':	b'9d55f4b5c87fff773d0457f3b23a953e',	'authTag':	b'5c9d
339778925aa4e44f43252a28681d',	'ciphertextPubKey':	'0x21dbc985b625f2a42d0f86fc234b49b5547792
8bae73dfac73bafd9bed50abe70'}
decrypted	msg:	b'Text	to	be	encrypted	by	ECC	public	key	and	decrypted	by	its	corresponding	E
CC	private	key'

Enjoy	the	above	example,	play	with	it,	try	to	understand	how	exactly	it	works,	try	to	change	the	underlying	ECC
curve,	try	to	change	the	symmetric	encryption	algorithm,	try	to	decrypt	the	ciphertext	with	wrong	private	key.

ECC	Encryption	/	Decryption

137

ECIES	(Elliptic	Curve	Integrated	Encryption	Scheme)
A	hybrid	encryption	scheme	similar	to	the	previously	demonstrated	code	is	standardized	under	the	name	Elliptic
Curve	Integrated	Encryption	Scheme	(ECIES)	in	many	crypto	standards	like	SECG	SEC-1,	ISO/IEC	18033-2,	IEEE
1363a	and	ANSI	X9.63.	ECIES	is	a	public-key	authenticated	encryption	scheme,	which	works	similarly	to	the	above
code	examples,	but	uses	a	KDF	(key-derivation	function)	for	deriving	separate	MAC	key	and	symmetric	encryption
key	from	the	ECDH	shared	secret.	It	has	many	variants.

The	ECIES	standard	combines	ECC-based	asymmetric	cryptography	with	symmetric	ciphers	to	provide	data
encryption	by	EC	private	key	and	decryption	by	the	corresponding	EC	public	key.	The	ECIES	encryption	scheme	uses
ECC	cryptography	(public	key	cryptosystem)	+	key-derivation	function	(KDF)	+	symmetric	encryption	algorithm	+
MAC	algorithm,	combined	together	like	it	is	shown	on	the	figure	below:

The	input	of	the	ECIES	encryption	consists	of	recipient's	public	key	+	plain	text	message.	The	output	consists	of
sender's	ephemeral	public	key	(ciphertext	public	key)	+	encrypted	message	(ciphertext	+	symmetric	algorithm
parameters)	+	authentication	tag	(MAC	code):

	ECIES-encrypt(recipientPublicKey,	plaintextMessage)		➔		{	cipherTextPublicKey,

encryptedMessage,	authTag	}	

The	ECIES	decryption	takes	the	output	from	the	encryption	+	the	recipient's	private	key	and	produces	the	original
plaintext	message	or	detects	a	problem	(e.g.	integrity	/	authentication	error):

	ECIES-decrypt(cipherTextPublicKey,	encryptedMessage,	authTag,	recipientPrivateKey,)		➔

	plaintextMessage	

ECIES	Hybrid	Encryption	Scheme

138

http://www.secg.org/sec1-v2.pdf
https://www.shoup.net/iso/std4.pdf
http://grouper.ieee.org/groups/1722/contributions/2012/1722a-butterworth-ieee1363.pdf
ftp://ftp.iks-jena.de/mitarb/lutz/standards/ansi/X9/x963-7-5-98.pdf

The	ECIES	encryption	scheme	is	a	framework,	not	a	concrete	algorithm.	It	can	be	implemented	by	plugging	different
algorithms,	e.g.	the	secp256k1	or	P-521	elliptic	curve	for	the	public-key	calculations	+	PBKDF2	or	Scrypt	for	KDF
function	+	AES-CTR	or	AES-GCM	or	ChaCha20-Poly1305	for	symmetric	cipher	and	authentication	tag	+	HMAC-
SHA512	for	MAC	algorithm	(in	case	of	unauthenticated	encryption).

In	the	next	section	we	shall	demonstrate	through	a	code	example	how	to	use	ECIES	in	practice.

ECIES	Hybrid	Encryption	Scheme

139

ECIES	(Elliptic	Curve	Integrated	Encryption	Scheme)	-
Example
Now,	let's	demonstrate	how	the	ECIES	encryption	scheme	works	in	practice	in	Python.	We	shall	use	a	Python
library		eciespy	:

pip	install	eciespy

A	sample	Python	code	to	generate	public	/	private	key	pair	and	encrypt	and	decrypt	a	message	using	ECIES	is:

from	ecies.utils	import	generate_eth_key
from	ecies	import	encrypt,	decrypt
import	binascii

privKey	=	generate_eth_key()
privKeyHex	=	privKey.to_hex()
pubKeyHex	=	privKey.public_key.to_hex()
print("Encryption	public	key:",	pubKeyHex)
print("Decryption	private	key:",	privKeyHex)

plaintext	=	b'Some	plaintext	for	encryption'
print("Plaintext:",	plaintext)

encrypted	=	encrypt(pubKeyHex,	plaintext)
print("Encrypted:",	binascii.hexlify(encrypted))

decrypted	=	decrypt(privKeyHex,	encrypted)
print("Decrypted:",	decrypted)

The	above	code	is	pretty	simple:	just	generate	ECC	public	+	private	key	pair	using
	ecies.utils.generate_eth_key()		and	call	the		ecies.encrypt(pubKey,	msg)		and		decrypt(privKey,

encryptedMsg)		functions	from	the		eciespy		library.

The	output	form	the	above	code	looks	like	this:

Encryption	public	key:	0x0dc8e06c055b45ecf110258ed5c0261ce2019b1bd0f8f226dcd010dade448b8f304
a0915c68cdf7ddded8e4021d28fb92e27d08df695f48a0d2c41ddee750fc7
Decryption	private	key:	0x487fd8b53c471e3c38484a0fbe4751ace67a9ed28e60ea6b0b44c445b881f99d
Plaintext:	b'Some	plaintext	for	encryption'
Encrypted:	b'045699078bbd101e270572d0d68e87a8f7b6cc377ebeeffb60d2fcac5dc7bdd86a26d7f79d13b92
e923a0e2cdbe418a7856b27157ef150d5c72f4f8f312467d13221ebe7049b7ed2f0ed253bce13117129a7b01bb88
1b8dfbf004ff11f3ebed4c732744bc49ea03230c2d1b2ec80774e79c075431d2019464d3de97ceb96'
Decrypted:	b'Some	plaintext	for	encryption'

The	Python		eciespy		library	internally	uses	ECC	cryptography	over	the	secp256k1	curve	+	AES-256-GCM
authenticated	encryption.	Note	that	the	above	encrypted	message	holds	together	4	values:		{cipherPubKey,	AES-

nonce,	authTag,	AES-ciphertext}	,	packed	in	binary	form	and	not	directly	visible	from	the	above	output.

ECIES	Encryption	-	Example

140

https://kigawas.me/eciespy/

ECIES	Encryption	-	Example

141

Exercises:	ECC-Based	Asymmetric	Encrypt	/	Decrypt
(ECIES)
Write	a	program	to	encrypt	/	decrypt	a	message	by	public	/	private	key	using	ECIES	(Elliptic	Curve	Integrated
Encryption	Scheme).	The	encryption	will	require	an	EC	public	key	and	decryption	will	require	the	corresponding
EC	private	key.	Internally,	use	ECC	cryptography	based	on	a	256-bit	elliptic	curve	by	choice	(e.g.
	brainpoolP256t1)	and	symmetric	encryption	by	choice	(e.g.	AES-256-CTR	+	MAC,	AES-128-GCM	or
ChaCha20-Poly1305),	along	with	key-derivation	function	by	choice	(e.g.	PBKDF2).

You	are	free	to	choose	between	writing	your	own	ECIES	implementation,	following	the	SECG-SEC-1	standard	or
use	a	standard	ECIES	library	for	your	language,	e.g.

Python:	https://pypi.org/project/eciespy
JavaScript:	https://github.com/bitchan/eccrypto
C#:	https://github.com/VirgilSecurity/virgil-sdk-crypto-net
Java:	https://github.com/Arryboom/smartbox-ecies-java
C,	C++,	PHP,	Perl:	https://github.com/jedisct1/libsodium

ECIES	Encryption
Write	a	program	to	encrypt	a	message	using	the	ECIES	hybrid	encryption	scheme	and	a	256-bit	ECC	public	key	(2
*	256	bits).

The	input	consists	of	the	public	key	in	hex	(at	the	first	line,	uncompressed,	128	hex	digits)	+	plaintext	message
for	encryption	(at	the	second	line).
The	output	is	the	hex-encoded	encrypted	message.	It	may	hold	the	ECC	ciphertext	public	key	+	the	ciphertext
+	MAC	code	+	the	symmetric	key	algorithm	parameters,	but	this	depends	very	much	on	the	underlying	algorithms
and	implementation.

Sample	input:

552e2b308514b38e4989d71ed263e0af6376f65ba81a94ebb74f6fadc223ee80aa8fb710cfb445e0871cd1c1a0c1
f2adb2b6eedc2a0470b04244548c5be518c8
Sample	text	for	ECIES	encryption.

Sample	output:

It	will	be	different	for	each	program	execution	due	to	the	randomness	in	the	encryption	scheme:

0442e2fba3fddba1ba9207f3276e141809782dc72529523aa1fcf35b15c4c22a9333ddacd7d64de4abd0a36138d4
30c50be7a98d5512cb8c2fe36ca45a0bbd7927c150ae3637c45093207531ce75e3841d4808ced85e82305d8da891
708c20479388f6d4a7cde213bb36bf860c5df0077358a942eeb9a4c23e89bcc11f11

ECIES	Decryption
Write	a	program	to	decrypt	an	encrypted	message	created	by	the	program	from	the	previous	example,	using	the
ECIES	hybrid	encryption	scheme	and	a	256-bit	ECC	private	key.

The	input	consists	of	the	private	key	in	hex	(at	the	first	line,	64	hex	digits)	+	encrypted	message	for	decryption
(at	the	second	line).
The	output	is	the	decrypted	plaintext	message.	In	case	or	decryption	problem	(e.g.	incorrect	decryption	key
or	broken	encrypted	message),	display		Error:	cannot	decrypt	the	message	.

Sample	input:

Exercises:	ECIES	Encrypt	/	Decrypt

142

https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
http://www.secg.org/sec1-v2.pdf
https://pypi.org/project/eciespy/
https://github.com/bitchan/eccrypto
https://github.com/VirgilSecurity/virgil-sdk-crypto-net
https://github.com/Arryboom/smartbox-ecies-java
https://github.com/jedisct1/libsodium

27f07d3251dee39ec2c5ff800641f4d839e6f8065033e9a710ea2e519473bdd7
0442e2fba3fddba1ba9207f3276e141809782dc72529523aa1fcf35b15c4c22a9333ddacd7d64de4abd0a36138d4
30c50be7a98d5512cb8c2fe36ca45a0bbd7927c150ae3637c45093207531ce75e3841d4808ced85e82305d8da891
708c20479388f6d4a7cde213bb36bf860c5df0077358a942eeb9a4c23e89bcc11f11

Sample	output:

Sample	text	for	ECIES	encryption.

Sample	input:

This	example	holds	an	incorrect	decryption	private	key:

9ab686c269b2c58f0fca699dde09cf24e23353e56bd60095d681b23709cb0dc3
0442e2fba3fddba1ba9207f3276e141809782dc72529523aa1fcf35b15c4c22a9333ddacd7d64de4abd0a36138d4
30c50be7a98d5512cb8c2fe36ca45a0bbd7927c150ae3637c45093207531ce75e3841d4808ced85e82305d8da891
708c20479388f6d4a7cde213bb36bf860c5df0077358a942eeb9a4c23e89bcc11f11

Sample	output:

Error:	cannot	decrypt	the	message

Exercises:	ECIES	Encrypt	/	Decrypt

143

Digital	Signatures,	ECDSA	and	EdDSA
Digital	signatures	are	a	cryptographic	tool	to	sign	messages	and	verify	message	signatures	in	order	to	provide
proof	of	authenticity	for	digital	messages	or	electronic	documents.	Digital	signatures	provide:

Message	authentication	-	a	proof	that	certain	known	sender	(secret	key	owner)	have	created	and	signed	the
message.
Мessage	integrity	-	a	proof	that	the	message	was	not	altered	after	the	signing.
Non-repudiation	-	the	signer	cannot	deny	the	signing	of	the	document	after	the	signature	is	once	created.

Digital	signatures	are	widely	used	today	in	the	business	and	in	the	financial	industry,	e.g.	for	authorizing	bank
payments	(money	transfer),	for	exchange	of	signed	electronic	documents,	for	signing	transactions	in	the	public
blockchain	systems	(e.g.	transfer	of	coins,	tokens	or	other	digital	assets),	for	signing	digital	contracts	and	in	many
other	scenarios.

Digital	signatures	cannot	identify	who	is	the	person,	created	a	certain	signature.	This	can	be	solved	in	combination
with	a	digital	certificate,	which	binds	a	public	key	owner	with	identity	(person,	organization,	web	site	or	other).	By
design	digital	signatures	bind	messages	to	public	keys,	not	to	digital	identities.

Sign	Messages	and	Verify	Signatures:	How	It	Works?
Digital	signature	schemes	typically	use	a	public-key	cryptosystem	(such	as	RSA	or	ECC)	and	use	a	public	/
private	key	pairs.	A	message	is	signed	by	a	private	key	and	the	signature	is	verified	by	the	corresponding	public	key:

Messages	are	signed	by	the	sender	using	a	private	key	(signing	key).	Typically	the	input	message	is	hashed	and
then	the	signature	is	calculated	by	the	signing	algorithm.	Most	signature	algorithms	perform	some	calculation	with	the
message	hash	+	the	signing	key	in	a	way	that	the	result	cannot	be	calculated	without	the	signing	key.	The	result	from
message	signing	is	the	digital	signature	(one	or	more	integers):

	signMsg(msg,	privKey)		signature 	

Message	signatures	are	verified	by	the	corresponding	public	key	(verification	key).	Typically	the	signed	message	is
hashed	and	some	calculation	is	performed	by	the	signature	algorithm	using	the	message	hash	+	the	public	key.	The
result	from	signing	is	a	boolean	value	(valid	or	invalid	signature):

	verifyMsgSignature(msg,	signature,	pubKey)		valid	/	invalid 	

A	message	signature	mathematically	guarantees	that	certain	message	was	signed	by	certain	(secret)	private	key,
which	corresponds	to	certain	(non-secret)	public	key.	After	a	message	is	signed,	the	message	and	the	signature
cannot	be	modified	and	thus	message	authentication	and	integrity	is	guaranteed.	Anyone,	who	knows	the	public

Digital	Signatures

144

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Public_key_certificate

key	of	the	message	signer,	can	verify	the	signature.	Аfter	signing	the	signature	author	cannot	reject	the	act	of
signing	(this	is	known	as	non-repudiation).

Most	signature	schemes	work	like	it	is	shown	at	the	following	diagram:

At	signing,	the	input	message	is	hashed	(either	alone,	or	together	with	the	public	key	and	other	input	parameters),
then	some	computation	(based	on	elliptic	curves,	discrete	logarithms	or	other	cryptographic	primitive)	calculates	the
digital	signature.	The	produced	signed	message	consists	of	the	original	message	+	the	calculated	signature.

At	signature	verification,	the	message	for	verification	is	hashed	(either	alone	or	together	with	the	public	key)	and
some	computations	are	performed	between	the	message	hash,	the	digital	signature	and	the	public	key,	and	finally
a	comparison	decides	whether	the	signature	is	valid	or	not.

Digital	signatures	are	different	from	MAC	(message	authentication	codes),	because	MACs	are	created	and	verified
by	the	same	secret	key	using	a	symmetric	algorithm,	while	digital	signatures	are	created	by	a	signing	key	and	are
verified	by	a	different	verification	key,	corresponding	to	the	signing	key	using	an	asymmetric	algorithm.	Both
signatures	and	MAC	codes	provide	message	authentication	and	integrity.

Digital	Signature	Schemes	and	Algorithms
Most	public-key	cryptosystems	like	RSA	and	ECC	provide	secure	digital	signature	schemes	(signature	algorithms).
Examples	of	well	known	digital	signature	schemes	are:	DSA,	ECDSA,	EdDSA,	RSA	signatures,	ElGamal
signatures	and	Schnorr	signatures.

The	above	mentioned	signature	schemes	are	based	on	the	difficulty	of	the	DLP	(discrete	logarithm	problem)	and
ECDLP	(elliptic-curve	discrete	logarithm	problem)	and	are	quantum-breakable	(powerful	enough	quantum	computers
may	calculate	the	signing	key	from	the	message	signature).	Quantum-safe	signatures	(like	BLISS,	XMSS	and
McEliece)	are	not	massively	used,	because	of	long	key	length,	long	signatures	and	slower	performance,	compared	to
ECDSA	and	EdDSA.

The	most	popular	digital	signature	schemes	(as	of	Nov	2018)	are:	RSA	signatures,	ECDSA	and	EdDSA.	Let's	give
some	details	about	them,	along	with	some	live	code	examples.

RSA	Signatures
The	RSA	public-key	cryptosystem	provides	a	cryptographically	secure	digital	signature	scheme	(sign	+	verify),
based	on	the	math	of	the	modular	exponentiations	and	discrete	logarithms	and	the	difficulty	of	the	integer
factorization	problem	(IFP).	The	RSA	sign	/	verify	process	works	as	follows:

The	RSA	sign	algorithm	computes	a	message	hash,	then	encrypts	the	hash	with	the	private	key	exponent	to

Digital	Signatures

145

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Signing_messages
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/Schnorr_signature
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Signing_messages
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/EdDSA
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Signing_messages

obtain	the	signature.	The	obtained	signature	is	an	integer	number	(the	RSA	encrypted	message	hash).
The	RSA	verify	algorithm	first	computes	the	message	hash,	then	decrypts	the	message	signature	with	the
public	key	exponent	and	compares	the	obtained	decrypted	hash	with	the	hash	of	the	signed	message	to
ensure	the	signature	is	valid.

RSA	signatures	are	deterministic	(the	same	message	+	same	private	key	produce	the	same	signature).	A	non-
deterministic	variant	of	RSA-signatures	is	easy	to	be	designed	by	padding	the	input	message	with	some	random	bytes
before	signing.

RSA	signatures	are	widely	used	in	modern	cryptography,	e.g.	for	signing	digital	certificates	to	protect	Web	sites.	For
example	(as	of	Nov	2018)	the	Microsoft's	official	Web	site	uses		Sha256RSA		for	its	digital	certificate.	Nevertheless,	the

trend	in	the	last	decade	is	to	move	from	RSA	and	DSA	to	elliptic	curve-based	signatures	(like	ECDSA	and	EdDSA).
Modern	cryptographers	and	developers	prefer	ECC	signatures	for	their	shorter	key	length,	shorter	signature,	higher
security	(for	the	same	key	length)	and	better	performance.

DSA	(Digital	Signature	Algorithm)
The	DSA	(Digital	Signature	Algorithm)	is	a	cryptographically	secure	standard	for	digital	signatures	(signing
messages	and	signature	verification),	based	on	the	math	of	the	modular	exponentiations	and	discrete	logarithms
and	the	difficulty	of	the	discrete	logarithm	problem	(DLP).	It	is	alternative	of	RSA	and	is	used	instead	of	RSA,	because
of	patents	limitations	with	RSA	(until	Sept	2000).	DSA	is	variant	of	the	ElGamal	signature	scheme.	The	DSA	sign	/
verify	process	works	as	follows:

The	DSA	signing	algorithm	computes	a	message	hash,	then	generates	a	random	integer	k	and	computes	the
signature	(а	pair	of	integers	{r,	s}),	where	r	is	computed	from	k	and	s	is	computed	using	the	message	hash	+
the	private	key	exponent	+	the	random	number	k.	Due	to	randomness,	the	signature	is	non-deterministic.
The	DSA	signature	verification	algorithm	involves	computations,	based	on	the	message	hash	+	the	public	key
exponent	+	the	signature	{r,	s}.

The	random	value	k	(generated	when	the	signature	is	computed)	opens	a	potential	vulnerability:	if	two	different
messages	are	signed	using	the	same	value	of	k	and	the	same	private	key,	then	an	attacker	can	compute	the	signer's
private	key	directly	(see	https://github.com/tintinweb/ecdsa-private-key-recovery).

A	deterministic-DSA	variant	is	defined	in	RFC	6979,	which	calculates	the	random	number	k	as	HMAC	from	the
private	key,	the	message	hash	and	few	other	parameters.	The	deterministic	DSA	is	considered	more	secure.

In	the	modern	cryptography,	the	elliptic-curve-based	signatures	(liike	ECDSA	and	EdDSA)	are	prefered	to	DSA,
because	of	shorter	key	lengths,	shorter	signature	lengths,	higher	security	levels	(for	the	same	key	length)	and	better
performance.

ECDSA	(Elliptic	Curve	Digital	Signature	Algorithm)
The	ECDSA	(Elliptic	Curve	Digital	Signature	Algorithm)	is	a	cryptographically	secure	digital	signature	scheme,
based	on	the	elliptic-curve	cryptography	(ECC).	ECDSA	relies	on	the	math	of	the	cyclic	groups	of	elliptic	curves
over	finite	fields	and	on	the	difficulty	of	the	ECDLP	problem	(elliptic-curve	discrete	logarithm	problem).

ECDSA	is	adaptation	of	the	classical	DSA	algorithm,	which	is	derived	from	the	ElGamal	signature	scheme.	More
precisely,	the	ECDSA	algorithm	is	a	variant	of	the	ElGamal	signature,	with	some	changes	and	optimizations	to
handle	the	representation	of	the	group	elements	(the	points	of	the	elliptic	curve).	Like	any	other	elliptic	curve	crypto
algorithm,	ECDSA	uses	an	elliptic	curve	(like	the		secp256k1),	private	key	(random	integer	within	the	curve	key
length	-	for	signing	messages)	and	public	key	(EC	point,	calculated	from	the	private	key	by	multiplying	it	to	the	curve
generator	point	-	for	verifying	signatures).	The	ECDSA	sign	/	verify	process	works	as	follows:

The	ECDSA	signing	algorithm	computes	a	message	hash,	then	generates	a	random	integer	k	and	computes	the
signature	(a	pair	of	integers	{r,	s}),	where	r	is	computed	from	k	and	s	is	computed	using	the	message	hash	+
the	private	key	+	the	random	number	k.	Due	to	the	randomness,	the	signature	is	non-deterministic.
The	ECDSA	signature	verification	algorithm	involves	computations,	based	on	the	message	hash	+	the	public

Digital	Signatures

146

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://github.com/tintinweb/ecdsa-private-key-recovery
https://tools.ietf.org/html/rfc6979
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme

key	+	the	signature	{r,	s}.

The	random	value	k	(generated	when	the	signature	is	computed)	opens	a	potential	vulnerability:	if	two	different
messages	are	signed	using	the	same	value	of	k	and	the	same	private	key,	then	an	attacker	can	compute	the	signer's
private	key	directly	(see	https://github.com/tintinweb/ecdsa-private-key-recovery).

A	deterministic-ECDSA	variant	is	defined	in	RFC	6979,	which	calculates	the	random	number	k	as	HMAC	from	the
private	key	+	the	message	hash	+	few	other	parameters.	The	deterministic	ECDSA	is	considered	more	secure.

ECDSA	signatures	are	the	most	widely	used	signing	algorithm,	used	by	millions	every	day	(as	of	Nov	2018).	For
example,	the	digital	certificates	in	Amazon	Web	sites	are	signed	by	the		Sha256ECDSA		signature	scheme.

EdDSA	(Edwards-curve	Digital	Signature	Algorithm)
EdDSA	(Edwards-curve	Digital	Signature	Algorithm)	is	a	fast	digital	signature	algorithm,	using	elliptic	curves	in
Edwards	form	(like	Ed25519	and	Ed448-Goldilocks),	a	deterministic	variant	of	the	Schnorr's	signature	scheme,
designed	by	a	team	of	the	well-known	cryptographer	Daniel	Bernstein.

EdDSA	is	more	simple	than	ECDSA,	more	secure	than	ECDSA	and	is	designed	to	be	faster	than	ECDSA	(for
curves	with	comparables	key	length).	Like	ECDSA,	the	EdDSA	signature	scheme	relies	on	the	difficulty	of	the	ECDLP
problem	(elliptic-curve	discrete	logarithm	problem)	for	its	security	strength.

The	EdDSA	signature	algorithm	is	works	with	Edwards	elliptic	curves	like	Curve25519	and	Curve448,	which	are
highly	optimized	for	performance	and	security.	It	is	shown	that	Ed25519	signatures	are	typically	faster	than
traditional	ECDSA	signatures	over	curves	with	comparable	key	length.	Still,	the	performance	competition	is
disputable.	The	EdDSA	sign	/	verify	process	works	as	follows:

The	EdDSA	signing	algorithm	generates	a	deterministic	(not	random)	integer	r	(computed	by	hashing	the
message	and	the	hash	of	the	private	key),	then	computes	the	signature	{Rs,	s},	where	Rs	is	computed	from	r
and	s	is	computed	from	the	hash	of	(the	message	+	the	public	key	derived	from	the	private	+	the	number	r)	+
the	private	key.	The	signature	is	deterministic	(the	same	message	signed	by	the	same	key	always	gives	the
same	signature).
The	EdDSA	signature	verification	algorithm	involves	elliptic-curve	computations,	based	on	the	message
(hashed	together	with	the	public	key	and	the	EC	point	Rs	from	the	signature)	+	the	public	key	+	the	number	s
from	the	signature	{Rs,	s}.

By	design	EdDSA	signatures	are	deterministic	(which	improves	their	security).	A	non-deterministic	variant	of
EdDSA-signatures	is	easy	to	be	designed	by	padding	the	input	message	with	some	random	bytes	before	signing.

A	short	comparison	between	Ed25519	EdDSA	signatures	and	secp256k	ECDSA	signatures	is	given	below:

EdDSA-Ed25519 ECDSA-secp256k1

Performance	(so
urce) 8%	faster 8%	slower

Private	key	lengt
h

32	bytes	(256	bits	=	251	variable	bits	+	5
predefined) 32	bytes	(256	bits)

Public	key	length
(compressed)

32	bytes	(256	bits	=	255-bit	y-coordinate	
+	1-bit	x	coordinate)

33	bytes	(257	bits	=	256-bit	x-coordinate	+	
1-bit	y-coordinate)

Signature	size 64	bytes	(512	bits) 64	bytes	(512	bits)	or	65	bytes	(513	bits)	w
ith	the	public	key	recovery	bit

Public	key	recov
ery

not	possible	(signature	verification	invol
ves	hasing	of	the	public	key)

possible	(with	1	recovery	bit	added	in	the	
signature)

Security	level	(so
urce) ~128	bit	(more	precisely	125.8) ~128	bit	(more	precisely	127.8)

SafeCurves	secu

Digital	Signatures

147

https://github.com/tintinweb/ecdsa-private-key-recovery
https://tools.ietf.org/html/rfc6979
https://ed25519.cr.yp.to
https://eprint.iacr.org/2015/625.pdf
https://en.wikipedia.org/wiki/Schnorr_signature
https://cr.yp.to/djb.html
http://justmoon.github.io/curvebench/benchmark.html
https://safecurves.cr.yp.to/rho.html

rity	(source) 11	of	11	tests	passed 7	of	11	tests	passed

Modern	developers	often	use	Ed25519	signatures	instead	of	256-bit	curve	ECDSA	signatures,	because	EdDSA-
Ed25519	signature	scheme	uses	keys,	which	fit	in	32	bytes	(64	hex	digits),	signatures	fit	in	64	bytes	(128	hex	digits),
signing	and	verification	is	faster	and	the	security	is	considered	better.

Public	blockchains	(like	Bitcoin	and	Ethereum)	often	use	secp2561-based	ECDSA	signatures,	because	the	signer's
public	key	(and	its	blockchain	address)	can	be	easily	recovered	from	the	signature	(together	with	the	signed	message)
by	adding	just	1	additional	bit	to	the	signature.

In	the	general	case,	it	is	considered	that	EdDSA	signatures	are	recommended	to	ECDSA,	but	this	is	highly
disputable	and	depends	on	the	use	case,	on	the	curves	involved	and	many	other	parameters.

Other	Signature	Schemes	and	Algorithms
Most	signature	algorithms	are	derived	from	generic	signature	schemes	like	ElGamal	signatures	and	Schnorr
signatures.

RSA	signature	is	derived	from	the	RSA	encryption	scheme.
DSA	and	ECDSA	are	derived	from	ElGamal	signature	scheme.
EdDSA	is	derived	from	the	Schnorr	signature	scheme.

Other	signature	schemes	include:

ECGDSA:	an	elliptic-curve	digital	signature	scheme	(based	on	the	difficulty	of	the	ECDLP	problem),	a	slightly
simplified	variant	of	ECDSA,	known	as	the	German	version	of	ECDSA.
ECKDSA:	an	elliptic-curve	digital	signature	scheme	(based	on	the	difficulty	of	the	ECDLP	problem),	a
complicated	variant	of	ECDSA,	known	as	the	Korean	version	of	ECDSA.	The	ECKDSA	signs	given	message
by	given	EC	private	key,	along	with	the	signer's	digital	certificate	hash.	This	add	identity	to	the	digital
signature,	in	addition	to	message	authentication,	integrity	and	non-repudiation.
SM2	signature:	an	elliptic-curve	digital	signature	scheme	(based	on	the	difficulty	of	the	ECDLP	problem),	known
as	the	Chinese	digital	signature	algorithm,	developed	by	the	Chinese	Academy	of	Science.
GOST	R	34.10-2001:	an	elliptic-curve	digital	signature	scheme	(based	on	the	difficulty	of	the	ECDLP	problem),
known	as	the	Russian	digital	signature	algorithm,	one	of	the	Russian	cryptographic	standard	algorithms
(called	GOST	algorithms).

After	the	short	review	of	the	most	popular	digital	signature	algorithms,	let's	get	into	technical	details	about	the	RSA
sign,	ECDSA	and	EdDSA	signature	algorithms,	with	code	examples.

Digital	Signatures

148

https://safecurves.cr.yp.to
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/Schnorr_signature
https://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf
https://eprint.iacr.org/2007/357.pdf
https://tools.ietf.org/html/draft-shen-sm2-ecdsa-00
https://tools.ietf.org/html/rfc5832

RSA	Signatures:	Sign	and	Verify
The	RSA	public-key	cryptosystem	provides	a	digital	signature	scheme	(sign	+	verify),	based	on	the	math	of	the
modular	exponentiations	and	discrete	logarithms	and	the	computational	difficulty	of	the	RSA	problem	(and	its
related	integer	factorization	problem).	The	RSA	sign	/	verify	algorithm	works	as	described	below.

Key	Generation
The	RSA	algorithm	uses	keys	of	size	1024,	2048,	4096,	...,	16384	bits.	RSA	supports	also	longer	keys	(e.g.	65536
bits),	but	the	performance	is	too	slow	for	practical	use	(some	operations	may	take	several	minutes	or	even	hours).	For
128-bit	security	level,	a	3072-bit	key	is	required.

The	RSA	key-pair	consists	of:

public	key	{n,	e}
private	key	{n,	d}

The	numbers	n	and	d	are	typically	big	integers	(e.g.	3072	bits),	while	e	is	small,	typically	65537.

By	definition,	the	RSA	key-pairs	has	the	following	property:

(m) ≡ (m) ≡ m(modn)	for	all	m	in	the	range	[0...n)

RSA	Sign
Signing	a	message	msg	with	the	private	key	exponent	d:

1.	 Calculate	the	message	hash:	h	=	hash(msg)

2.	 Encrypt	h	to	calculate	the	signature:	s = h (modn)

The	hash	h	should	be	in	the	range	[0...n).	The	obtained	signature	s	is	an	integer	in	the	range	[0...n).

RSA	Verify	Signature
Verifying	a	signature	s	for	the	message	msg	with	the	public	key	exponent	e:

1.	 Calculate	the	message	hash:	h	=	hash(msg)

2.	 Decrypt	the	signature:	h = s (modn)

3.	 Compare	h	with	h'	to	find	whether	the	signature	is	valid	or	not

If	the	signature	is	correct,	then	the	following	will	be	true:

h = s (modn) = (h) (modn) = h

The	RSA	sign	/	verify	algorithm	is	pretty	simple.	Let's	implement	it	with	some	code.

e d d e

d

′ e

′ e d e

RSA	Signatures

149

https://en.wikipedia.org/wiki/RSA_problem
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Signing_messages

RSA:	Sign	/	Verify	-	Examples
Let's	demonstrate	in	practice	the	RSA	sign	/	verify	algorithm.	We	shall	use	the		pycryptodome		package	in	Python	to

generate	RSA	keys.	After	the	keys	are	generated,	we	shall	compute	RSA	digital	signatures	and	verify	signatures	by	a
simple	modular	exponentiation	(by	encrypting	and	decrypting	the	message	hash).

pip	install	pycryptodome

Next,	generate	a	1024-bit	RSA	key-pair:

from	Crypto.PublicKey	import	RSA

keyPair	=	RSA.generate(bits=1024)
print(f"Public	key:		(n={hex(keyPair.n)},	e={hex(keyPair.e)})")
print(f"Private	key:	(n={hex(keyPair.n)},	d={hex(keyPair.d)})")

The	output	from	the	above	code	might	look	like	this	(it	will	be	different	at	each	execution	due	to	randomness):

Public	key:		(n=0xf51518d30754430e4b89f828fd4f1a8e8f44dd10e0635c0e93b7c01802729a37e1dfc8848d
7fbbdf2599830268d544c1ecab4f2b19b6164a4ac29c8b1a4ec6930047397d0bb93aa77ed0c2f5d5c90ff3d45875
5b2367b46cc5c0d83f8f8673ec85b0575b9d1cea2c35a0b881a6d007d95c1cc94892bec61c2e9ed1599c1e605f,	
e=0x10001)
Private	key:	(n=0xf51518d30754430e4b89f828fd4f1a8e8f44dd10e0635c0e93b7c01802729a37e1dfc8848d
7fbbdf2599830268d544c1ecab4f2b19b6164a4ac29c8b1a4ec6930047397d0bb93aa77ed0c2f5d5c90ff3d45875
5b2367b46cc5c0d83f8f8673ec85b0575b9d1cea2c35a0b881a6d007d95c1cc94892bec61c2e9ed1599c1e605f,	
d=0x165ecc9b4689fc6ceb9c3658977686f8083fc2e5ed75644bb8540766a9a2884d1d82edac9bb5d312353e63e4
ee68b913f264589f98833459a7a547e0b2900a33e71023c4dedb42875b2dfdf412881199a990dfb77c097ce71b9c
8b8811480f1637b85900137231ab47a7e0cbecc0b011c2c341b6de2b2e9c24d455ccd1fc0c21)

Now,	let's	sign	a	message,	using	the	RSA	private	key	{n,	d}.	Calculate	its	hash	and	raise	the	hash	to	the	power	d
modulo	n	(encrypt	the	hash	by	the	private	key).	We	shall	use	SHA-512	hash.	It	will	fit	in	the	current	RSA	key	size
(1024).	In	Python	we	have	modular	exponentiation	as	built	in	function		pow(x,	y,	n)	:

#	RSA	sign	the	message
msg	=	b'A	message	for	signing'
from	hashlib	import	sha512
hash	=	int.from_bytes(sha512(msg).digest(),	byteorder='big')
signature	=	pow(hash,	keyPair.d,	keyPair.n)
print("Signature:",	hex(signature))

The	obtained	digital	signature	is	an	integer	in	the	range	of	the	RSA	key	length	[0...n).	For	the	above	private	key	and
the	above	message,	the	obtained	signature	looks	like	this:

Signature:	0x650c9f2e6701e3fe73d3054904a9a4bbdb96733f1c4c743ef573ad6ac14c5a3bf8a4731f6e6276f
aea5247303677fb8dbdf24ff78e53c25052cdca87eecfee85476bcb8a05cb9a1efef7cb87dd68223e117ce800ac4
6177172544757a487be32f5ab8fe0879fa8add78be465ea8f8d5acf977e9f1ae36d4d47816ea6ed41372b

The	signature	is	1024-bit	integer	(128	bytes,	256	hex	digits).	This	signature	size	corresponds	to	the	RSA	key	size.

Now,	let's	verify	the	signature,	by	decrypting	the	signature	using	the	public	key	(raise	the	signature	to	power	e
modulo	n)	and	comparing	the	obtained	hash	from	the	signature	to	the	hash	of	the	originally	signed	message:

#	RSA	verify	signature

RSA:	Sign	/	Verify	-	Examples

150

https://docs.python.org/3/library/functions.html#pow

msg	=	b'A	message	for	signing'
hash	=	int.from_bytes(sha512(msg).digest(),	byteorder='big')
hashFromSignature	=	pow(signature,	keyPair.e,	keyPair.n)
print("Signature	valid:",	hash	==	hashFromSignature)

The	output	will	show		True	,	because	the	signature	will	be	valid:

Signature	valid:	True

Now,	let's	try	to	tamper	the	message	and	verify	the	signature	again:

#	RSA	verify	signature	(tampered	msg)
msg	=	b'A	message	for	signing	(tampered)'
hash	=	int.from_bytes(sha512(msg).digest(),	byteorder='big')
hashFromSignature	=	pow(signature,	keyPair.e,	keyPair.n)
print("Signature	valid	(tampered):",	hash	==	hashFromSignature)

Now,	the	signature	will	be	invalid	and	the	output	from	the	above	code	will	be:

Signature	valid	(tampered):	False

Enjoy	playing	with	the	above	RSA	sign	/	verify	examples.	Try	to	modify	the	code,	e.g.	use	4096-bit	keys,	try	to
tamper	the	public	key	at	the	signature	verification	step	or	the	signature.

The	RSA	Signature	Standard	PKCS#1
The	simple	use	of	RSA	signatures	is	demonstrated	above,	but	the	industry	usually	follows	the	crypto	standards.	For
the	RSA	signatures,	the	most	adopted	standard	is	"PKCS#1",	which	has	several	versions	(1.5,	2.0,	2.1,	2.2),	the	latest
described	in	RFC	8017.	The	PKCS#1	standard	defines	the	RSA	signing	algorithm	(RSASP1)	and	the	RSA	signature
verification	algorithm	(RSAVP1),	which	are	almost	the	same	like	the	implemented	in	the	previous	section.

To	demonstrate	the	PKCS#1	RSA	digital	signatures,	we	shall	use	the	following	code,	based	on	the		pycryptodome	
Python	library,	which	implements	RSA	sign	/	verify,	following	the	PKCS#1	v1.5	specification:

from	Crypto.PublicKey	import	RSA
from	Crypto.Signature.pkcs1_15	import	PKCS115_SigScheme
from	Crypto.Hash	import	SHA256
import	binascii

#	Generate	1024-bit	RSA	key	pair	(private	+	public	key)
keyPair	=	RSA.generate(bits=1024)

#	Sign	the	message	using	the	PKCS#1	v1.5	signature	scheme	(RSASP1)
msg	=	b'A	message	for	signing'
hash	=	SHA256.new(msg)
signer	=	PKCS115_SigScheme(keyPair)
signature	=	signer.sign(hash)
print("Signature:",	binascii.hexlify(signature))

#	Verify	valid	PKCS#1	v1.5	signature	(RSAVP1)
msg	=	b'A	message	for	signing'
hash	=	SHA256.new(msg)
signer	=	PKCS115_SigScheme(keyPair)
try:

RSA:	Sign	/	Verify	-	Examples

151

https://tools.ietf.org/html/rfc8017#page-15

				signer.verify(hash,	signature)
				print("Signature	is	valid.")
except:
				print("Signature	is	invalid.")

#	Verify	invalid	PKCS#1	v1.5	signature	(RSAVP1)
msg	=	b'A	tampered	message'
hash	=	SHA256.new(msg)
signer	=	PKCS115_SigScheme(keyPair)
try:
				signer.verify(hash,	signature)
				print("Signature	is	valid.")
except:
				print("Signature	is	invalid.")

The	output	from	the	above	code	demonstrates	that	the	PKCS#1	RSA	signing	with	1024-bit	RSA	private	key
produces	1024-bit	digital	signature	and	that	it	is	successfully	validated	afterwards	with	the	corresponding	public	key.
If	the	message	or	the	signature	or	the	public	key	is	tampered,	the	signature	fails	to	validate.	The	output	from	the
above	example	looks	like	this:

Signature:	b'243b9ed6561ab3bddead98508af0ac34b4567b1358011ace24db71ce2bc7f1a2e942b6231aa84cb
07bae85b668d7c7cd0bc40cdda6f8162de57f0ee842e589c58f94aa4f96d51355f8aa395d7db950ebb9d375fca31
24b6222699a645e93287bc6f5eb5b750fc0b470588f949a887dff75ed42cf01d9642a5d497f609b8cd043'
Signature	is	valid.
Signature	is	invalid.

Note	that	in	real-world	applications	the	RSA	key	length	should	be	at	least	3072	bits	to	provide	secure	enough
signatures.

RSA:	Sign	/	Verify	-	Examples

152

Exercises:	RSA	Sign	/	Verify
In	this	exercise	we	shall	sign	messages	and	verify	signatures	using	the	PKCS#1	v.1.5	RSA	signature	algorithm	with
4096-bit	keys,	following	the	technical	specification	from	RFC	8017,	using	SHA3-512	for	hashing	the	input	message.
The	RSA-PKCS1	v1.5	digital	signature	algorithm	can	be	found	as	library	for	the	most	programming	languages.

The	RSA	private	key	will	be	given	encoded	in	PEM	format	(RFC	7468,	see	the	example).	The	corresponding	RSA
public	key	will	also	be	given	encoded	in	PEM	format.	The	RSA	signature	is	4096-bit	integer	(1024	hex	digits).

Sign	a	Message	with	RSA
Write	a	program	to	sign	given	text	message	with	given	4096-bit	private	key,	using	the	PKCS#1	v.1.5	RSA	signature
algorithm	with	SHA3-512	hashing	for	the	input	message.	The	input	consists	of	2	text	lines.	The	first	line	holds	the
input	message	for	signing.	The	next	few	lines	holds	the	private	key	as	hex	string.	Print	the	output	as	JSON
document,	holding	the	input	message	+	the	public	key	of	the	signer	(as	hex	string)	+	the	RSA	digital	signature	(as
hex	string).

Sample	input	(text	message	+	PEM-encoded	RSA	private	key):

Message	for	RSA	signing
-----BEGIN	RSA	PRIVATE	KEY-----
MIIJJwIBAAKCAgEAoYjbzkMmss6BU/eCBYhs3bFRBVldM9DlaM7WhPZEgmYl7C1O
b0kmEPG2O/GaNoBOnwptHykzvpYS42rr/D8I0LeJ/2dz0uStQv6kQDIDmNRTthW9
spcuBsqW3e1bRyf0JrL8ot1X8M4k0NGU7w508htPzRZXRS2Zonv8G/N35ePDV5Xf
5mrcOPOebconndXHRqfLlyXCxCS5x0qlJGX1d/oe2Xop7VfBP/UhrrmNmstZsBEv
L3f33+a482xuCTvPIQcv62N3laR2wKOJN9CpFOpqjwR8cj9oLjbCRHd5T/+bgc6D
O/XVzr9DAPVaYLZvm8puMhhgckNIjgPOfWsVyI+/G1zuUH5caFMhMaS95M2a1XNI
wJ5sF25PFpsttIrFXC+b0JS325mk5qvzCgnu0DrWT2VPBNjw4rvmhBPnFb/JdXy5
e5ZIpxtGRpvKYcBxDk6yqgt9SC/e81+tqCrFSQ9cG1QCV/BnZw4cd1JHe3/AHot1
YeWjb8YpIFifJ7WxFb0g9GIYJZTh3dC9hrNOfSsIoOL+ZAyNFp43u0FJT7qtC7Ct
xPvJnt/h8ACE07ewgkq3M0OzmT2RNIf0HhySMjwdIhlY8QGGoV3+zDu9nTx63tvv
aBikPwtZuCz76ipWb5Kt6SA80fsN/QOtDflmBwjlT6UvoivgK8C7iIrwQGUCAwEA
AQKCAgAEuDBbD3672jG3DicpLzkMpYNvhTTZmzXxvJsvtC1V6MqUhPPRq9DQvGLl
JP2zfIsxpEss43YeVL+wD6EIkfTmRyTpt6FLYXXjIIDhJyPdB8yudP/0wR9FK1OC
W6yp8bf97IcEvwDfQPHPjcs5mTYqW3xBbM5xEdA7ihyLlj/hxI7VFNWuVrS6hvpM
93o6Xr3l2r2DZIDO5R/uJj/LztBEFVesiBezCXx/TbXOL9NV0I7SkR1uT6WQpUiw
iItOnDkaHDu/Jlr8ppJ/6RYzJLSlBG3Hcw/fEwz7RgLmBe90h0O8Su1/PwNCRgSc
6DBbw3nX6Bo3gzThotIUsKkufgZsW+eGIEeH5SFGFcIsnVU8AP/FZEQ3RMNXrxdx
U67asN7iQICVJujO419aZ/r+GiLnCp5+UIippYVBXf5RaHcZiurQ/SbuvppZskrA
8oDI4ykB2Y3DPxqFjygxSkxhwBNcBv5CNvAwpFTu94NDYCEgz2O3x4VaDvc52RNF
IlX8Hc9kvvpWBYO24i8jV1Unnb5ojEhlJNfAmPn8GMI/d+j5oVBC0QemieWdc1cp
OkiKliiVvbFPVSwZo1NClEPg8K9TLMynE/PqV+0Ud05qeXn4Y08b9sqrF02JiTDH
aEdYtvCM80FPjqXWi4zIDkr9Im4fuX2anzFU3T0od6Ye15OyPwKCAQEAyPQD5rQM
4yR6iUTTV0x00Se5noY2ztUL3JTi0qkm+9kBDPHdGYRIB7sN1RacWgXdqPRC4M0h
+1IWYg6lJj8IsjJjEszpRmSwLUpt2xKuh+beaWPQhg/bx8jGUrTFqNo6FPJ8RT/3
UaeRUEmqyj3vxw+lc7pZjk9GxVMD7uWbMU4GLE20h97oMr5cW4wvzzWoeofKMkyn
sDTORAC8siWZSAYKJEDlziDujiCfhVmU780igWiTODuAg4GXVqsbXC6FIMs6zGod
7D2+AUZGBj4H4o03miTMYsWCPDkPZMtvAbAKnNEp6UB4/j8ofApDUIYWF5fLBZgk
2Ri6x4XM/0TS9wKCAQEAzciWYXKjkQIVEtIXMlYGRE+irrsWL/wPmRBVFX13THqW
7Ul/rYNHSN1JaIeE9KJqgLUD1kQ+x9vHiSgKTVjrL2c/VyZrJbI3OUIAZmQ9Ahpu
qJ709waXs2VnRdZspAp/1rnf5H8u/1zWHTebzvfJEq6Ys9vRam6Jcr1wI1/9u6pJ
lwSOps67YVxAp2kAC6w2HuMlwQYTaphOHiySO+Jx6nk15r4Vgbv5mJvjQetS65AD
gJPhtep+9Sa1HvzUPQ3Gu7sz0uz5vjRJTv4RRgNSEGCLHjJflgBsl1epsBlH7Xrh
rotRox8AxVnbdXOVcONBB7GAAb7Z+bPCmXdSS2sUgwKCAQAyg3Q/l97tcgwDWXOu

Exercises:	RSA	Sign	and	Verify

153

https://tools.ietf.org/html/rfc8017#page-15
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://tools.ietf.org/html/rfc7468

rB9pPA0i1iYM0+0JY7uorLCJ+kCTWnDzqxbYKqMNf4OJ9ZOElvIAxE/Ydwf9WiUV
eh7bfGL/JNc2xLSsjdsTiJyquNQLtfWC3ZWnoMaJn7tX+JNFFLc8SRoIQpD6l6oA
8JTHex1h++PrK+5kR7vjX4AlYrGWjWnmBZhkuQlKUfDqq1hQhLXE8xPr7To0SeMk
/OKNAkemWVHrAMg2nei7gos3xF76HKl1Jy/k3ryGIrjb8S2x0qRTIhGngtWySFHt
28XrowfpDXr7ER7tuIIwGhsrV28zgDiC05wWfRXWKFZHdY00HQoBu/73O4ooAXBI
cqp9AoIBAHQHHYNkeAVS/z7VZm7jQjVSEZAjvKbhoInVQ6QSUim1FVRFlM/orVDQ
NIvTnYux6AsaBUfSwvM9YIxdHzHtaO4ZcQVajB99FNYb+M3CxwNgk/RPbB+8f9yO
2GPwOuFjaiFQPIVBkOY7Gh7vM9LGs4DtIPyIfNNd7/HaDlhjz1T49vVHhIdZGR4U
PgAmm/f46asQuEDVhC0eIy2wQ+OwEjr6jQHFO6siqeD6RHDulpprYQ4mU6WWym6/
nHAUbjbehadkLhxHsaklIhCAAI1RYfwJ82bbUDnrk07iBrNcDcpA9u7LbwRifrTH
rY3T1fcIq6oC0wIo8g5w5NBTDvunLLECggEASMBX4MfNUOYNqWoutQKNSAjjTdSy
MpSXD9MHI5uZnTEG2VEGbN74oQmMx1BtANIOhz17XrYy/fCGyRXiwIqtszMYoYDN
J3HXPQFCvUFtsb8f8fOCbnfRyxiA4jRlFYrobjtTB0kBol6ISsT7+YQIean96Ppk
PHdAA+K0/yDvhG8wC1CUwzaBwfayKM2bhGQgVIqM+ZCV/Ji0g1KKiMVXUF0cvgU6
FI+vQvLnxE7zbFOewbZmqqYGen7J7gOpNJyHvkSIia3KpJpc8IzWsrOH+8xOIX06
fi/wuMFXO7Zz9wyzEKuNXiFExo3FNRChSNonWCJj14Q8cuNW4S0J9hhvAg==
-----END	RSA	PRIVATE	KEY-----

Sample	output	(message	+	hex-encoded	signature	+	PEM-encoded	RSA	public	key):

Message	for	RSA	signing
28ce01ec0f8511e92407496b7aa777a8b38fbc27a3656c9862830427bf8a006d59d19ac3b3441f174aee2fe6560b
2b5f91aeb72ffa150dad4bd4e93a3b78eabfb48f8051b09cdfc5cbb63b014a7beb81cae4220fa01bedf5fa10aa3b
6dcdd7ad229fd7ce2e8883a4893bef532c7b7822993408577a20a198387e073e15e53ffab8d7f3c46fa50347cd45
d7a5d319b66d4ead658297a2e7127cc6a1dc5e104beb3ae2ba390d5ae90a66bd8a537e4df296c212186754206c5a
0b155c226a3a580e943db33bf9e9829ea3e38f00aafa0e4839bf4673d83b14c74cd9ac359afc3fa56ca7f3a8391e
6fb234561b9deca9ac3fa9147d70b0f1189db734b5ea96f287c604467dab0efbf5f1c78437920283dfe6fbcd56f4
e859e24ee37552b3b8de5c4fa35e65cf9fe63ec7e2fd155d503fec2648303e495d86af97ac53c14b203bdc723336
5d481fda08cac905c48e31bd389bea0f983e035225c4fca269a66009332bbba83542dcd484832f4d40ab14eee360
9aa78c01539984758592de3355b528de3c8a669442cbd6f03808226ef0c13924b9553b7af7ff02a6916f106061a7
bcbe093f795d9455709ab2b030ff485e9993eb978ae57cabeade4747e981b47c36128c39df970d1f29c4e4a3c225
a8384d55995599c9ce3afe14068f4eb4edeb120beb534955b519a4424f82136d3511a0dafad46b010c3fa15bd233
bdc85a7fd42a
-----BEGIN	PUBLIC	KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAoYjbzkMmss6BU/eCBYhs
3bFRBVldM9DlaM7WhPZEgmYl7C1Ob0kmEPG2O/GaNoBOnwptHykzvpYS42rr/D8I
0LeJ/2dz0uStQv6kQDIDmNRTthW9spcuBsqW3e1bRyf0JrL8ot1X8M4k0NGU7w50
8htPzRZXRS2Zonv8G/N35ePDV5Xf5mrcOPOebconndXHRqfLlyXCxCS5x0qlJGX1
d/oe2Xop7VfBP/UhrrmNmstZsBEvL3f33+a482xuCTvPIQcv62N3laR2wKOJN9Cp
FOpqjwR8cj9oLjbCRHd5T/+bgc6DO/XVzr9DAPVaYLZvm8puMhhgckNIjgPOfWsV
yI+/G1zuUH5caFMhMaS95M2a1XNIwJ5sF25PFpsttIrFXC+b0JS325mk5qvzCgnu
0DrWT2VPBNjw4rvmhBPnFb/JdXy5e5ZIpxtGRpvKYcBxDk6yqgt9SC/e81+tqCrF
SQ9cG1QCV/BnZw4cd1JHe3/AHot1YeWjb8YpIFifJ7WxFb0g9GIYJZTh3dC9hrNO
fSsIoOL+ZAyNFp43u0FJT7qtC7CtxPvJnt/h8ACE07ewgkq3M0OzmT2RNIf0HhyS
MjwdIhlY8QGGoV3+zDu9nTx63tvvaBikPwtZuCz76ipWb5Kt6SA80fsN/QOtDflm
BwjlT6UvoivgK8C7iIrwQGUCAwEAAQ==
-----END	PUBLIC	KEY-----

Verify	Message	Signature	with	RSA
Write	a	program	to	verify	RSA	signature	(calculated	by	using	PKCS#1	v.1.5	+	SHA3-512),	created	by	the	previous
exercise.	The	input	comes	as	signed	message	(first	line)	+	RSA	digital	signature	(second	line)	+	4096-bit	RSA
public	key	(all	input	lines	to	the	end).	Print	as	output	a	single	word:	"valid'	or	"invalid".

Exercises:	RSA	Sign	and	Verify

154

Sample	input	(correctly	signed	message):

Message	for	RSA	signing
28ce01ec0f8511e92407496b7aa777a8b38fbc27a3656c9862830427bf8a006d59d19ac3b3441f174aee2fe6560b
2b5f91aeb72ffa150dad4bd4e93a3b78eabfb48f8051b09cdfc5cbb63b014a7beb81cae4220fa01bedf5fa10aa3b
6dcdd7ad229fd7ce2e8883a4893bef532c7b7822993408577a20a198387e073e15e53ffab8d7f3c46fa50347cd45
d7a5d319b66d4ead658297a2e7127cc6a1dc5e104beb3ae2ba390d5ae90a66bd8a537e4df296c212186754206c5a
0b155c226a3a580e943db33bf9e9829ea3e38f00aafa0e4839bf4673d83b14c74cd9ac359afc3fa56ca7f3a8391e
6fb234561b9deca9ac3fa9147d70b0f1189db734b5ea96f287c604467dab0efbf5f1c78437920283dfe6fbcd56f4
e859e24ee37552b3b8de5c4fa35e65cf9fe63ec7e2fd155d503fec2648303e495d86af97ac53c14b203bdc723336
5d481fda08cac905c48e31bd389bea0f983e035225c4fca269a66009332bbba83542dcd484832f4d40ab14eee360
9aa78c01539984758592de3355b528de3c8a669442cbd6f03808226ef0c13924b9553b7af7ff02a6916f106061a7
bcbe093f795d9455709ab2b030ff485e9993eb978ae57cabeade4747e981b47c36128c39df970d1f29c4e4a3c225
a8384d55995599c9ce3afe14068f4eb4edeb120beb534955b519a4424f82136d3511a0dafad46b010c3fa15bd233
bdc85a7fd42a
-----BEGIN	PUBLIC	KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAoYjbzkMmss6BU/eCBYhs
3bFRBVldM9DlaM7WhPZEgmYl7C1Ob0kmEPG2O/GaNoBOnwptHykzvpYS42rr/D8I
0LeJ/2dz0uStQv6kQDIDmNRTthW9spcuBsqW3e1bRyf0JrL8ot1X8M4k0NGU7w50
8htPzRZXRS2Zonv8G/N35ePDV5Xf5mrcOPOebconndXHRqfLlyXCxCS5x0qlJGX1
d/oe2Xop7VfBP/UhrrmNmstZsBEvL3f33+a482xuCTvPIQcv62N3laR2wKOJN9Cp
FOpqjwR8cj9oLjbCRHd5T/+bgc6DO/XVzr9DAPVaYLZvm8puMhhgckNIjgPOfWsV
yI+/G1zuUH5caFMhMaS95M2a1XNIwJ5sF25PFpsttIrFXC+b0JS325mk5qvzCgnu
0DrWT2VPBNjw4rvmhBPnFb/JdXy5e5ZIpxtGRpvKYcBxDk6yqgt9SC/e81+tqCrF
SQ9cG1QCV/BnZw4cd1JHe3/AHot1YeWjb8YpIFifJ7WxFb0g9GIYJZTh3dC9hrNO
fSsIoOL+ZAyNFp43u0FJT7qtC7CtxPvJnt/h8ACE07ewgkq3M0OzmT2RNIf0HhyS
MjwdIhlY8QGGoV3+zDu9nTx63tvvaBikPwtZuCz76ipWb5Kt6SA80fsN/QOtDflm
BwjlT6UvoivgK8C7iIrwQGUCAwEAAQ==
-----END	PUBLIC	KEY-----

Sample	output:

valid

Sample	input	(tampered	message):

Tampered	message
28ce01ec0f8511e92407496b7aa777a8b38fbc27a3656c9862830427bf8a006d59d19ac3b3441f174aee2fe6560b
2b5f91aeb72ffa150dad4bd4e93a3b78eabfb48f8051b09cdfc5cbb63b014a7beb81cae4220fa01bedf5fa10aa3b
6dcdd7ad229fd7ce2e8883a4893bef532c7b7822993408577a20a198387e073e15e53ffab8d7f3c46fa50347cd45
d7a5d319b66d4ead658297a2e7127cc6a1dc5e104beb3ae2ba390d5ae90a66bd8a537e4df296c212186754206c5a
0b155c226a3a580e943db33bf9e9829ea3e38f00aafa0e4839bf4673d83b14c74cd9ac359afc3fa56ca7f3a8391e
6fb234561b9deca9ac3fa9147d70b0f1189db734b5ea96f287c604467dab0efbf5f1c78437920283dfe6fbcd56f4
e859e24ee37552b3b8de5c4fa35e65cf9fe63ec7e2fd155d503fec2648303e495d86af97ac53c14b203bdc723336
5d481fda08cac905c48e31bd389bea0f983e035225c4fca269a66009332bbba83542dcd484832f4d40ab14eee360
9aa78c01539984758592de3355b528de3c8a669442cbd6f03808226ef0c13924b9553b7af7ff02a6916f106061a7
bcbe093f795d9455709ab2b030ff485e9993eb978ae57cabeade4747e981b47c36128c39df970d1f29c4e4a3c225
a8384d55995599c9ce3afe14068f4eb4edeb120beb534955b519a4424f82136d3511a0dafad46b010c3fa15bd233
bdc85a7fd42a
-----BEGIN	PUBLIC	KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAoYjbzkMmss6BU/eCBYhs
3bFRBVldM9DlaM7WhPZEgmYl7C1Ob0kmEPG2O/GaNoBOnwptHykzvpYS42rr/D8I
0LeJ/2dz0uStQv6kQDIDmNRTthW9spcuBsqW3e1bRyf0JrL8ot1X8M4k0NGU7w50
8htPzRZXRS2Zonv8G/N35ePDV5Xf5mrcOPOebconndXHRqfLlyXCxCS5x0qlJGX1

Exercises:	RSA	Sign	and	Verify

155

d/oe2Xop7VfBP/UhrrmNmstZsBEvL3f33+a482xuCTvPIQcv62N3laR2wKOJN9Cp
FOpqjwR8cj9oLjbCRHd5T/+bgc6DO/XVzr9DAPVaYLZvm8puMhhgckNIjgPOfWsV
yI+/G1zuUH5caFMhMaS95M2a1XNIwJ5sF25PFpsttIrFXC+b0JS325mk5qvzCgnu
0DrWT2VPBNjw4rvmhBPnFb/JdXy5e5ZIpxtGRpvKYcBxDk6yqgt9SC/e81+tqCrF
SQ9cG1QCV/BnZw4cd1JHe3/AHot1YeWjb8YpIFifJ7WxFb0g9GIYJZTh3dC9hrNO
fSsIoOL+ZAyNFp43u0FJT7qtC7CtxPvJnt/h8ACE07ewgkq3M0OzmT2RNIf0HhyS
MjwdIhlY8QGGoV3+zDu9nTx63tvvaBikPwtZuCz76ipWb5Kt6SA80fsN/QOtDflm
BwjlT6UvoivgK8C7iIrwQGUCAwEAAQ==
-----END	PUBLIC	KEY-----

Sample	output:

invalid

Exercises:	RSA	Sign	and	Verify

156

ECDSA:	Elliptic	Curve	Digital	Signatures
The	ECDSA	(Elliptic	Curve	Digital	Signature	Algorithm)	is	a	cryptographically	secure	digital	signature	scheme,
based	on	the	elliptic-curve	cryptography	(ECC).	ECDSA	relies	on	the	math	of	the	cyclic	groups	of	elliptic	curves
over	finite	fields	and	on	the	difficulty	of	the	ECDLP	problem	(elliptic-curve	discrete	logarithm	problem).	The	ECDSA
sign	/	verify	algorithm	relies	on	EC	point	multiplication	and	works	as	described	below.	ECDSA	keys	and	signatures
are	shorter	than	in	RSA	for	the	same	security	level.	A	256-bit	ECDSA	signature	has	the	same	security	strength	like
3072-bit	RSA	signature.

ECDSA	uses	cryptographic	elliptic	curves	(EC)	over	finite	fields	in	the	classical	Weierstrass	form.	These	curves	are
described	by	their	EC	domain	parameters,	specified	by	various	cryptographic	standards	such	as	SECG:	SEC	2	and
Brainpool	(RFC	5639).	Elliptic	curves,	used	in	cryptography,	define:

Generator	point	G,	used	for	scalar	multiplication	on	the	curve	(multiply	integer	by	EC	point)
Order	n	of	the	subgroup	of	EC	points,	generated	by	G,	which	defines	the	length	of	the	private	keys	(e.g.	256	bits)

For	example,	the	256-bit	elliptic	curve		secp256k1		has:

Order	n	=	115792089237316195423570985008687907852837564279074904382605163141518161494337
(prime	number)
Generator	point	G	{x	=
55066263022277343669578718895168534326250603453777594175500187360389116729240,	y	=
32670510020758816978083085130507043184471273380659243275938904335757337482424}

Key	Generation
The	ECDSA	key-pair	consists	of:

private	key	(integer):	privKey
public	key	(EC	point):	pubKey	=	privKey	*	G

The	private	key	is	generated	as	a	random	integer	in	the	range	[0...n-1].	The	public	key	pubKey	is	a	point	on	the
elliptic	curve,	calculated	by	the	EC	point	multiplication:	pubKey	=	privKey	*	G	(the	private	key,	multiplied	by	the
generator	point	G).

The	public	key	EC	point	{x,	y}	can	be	compressed	to	just	one	of	the	coordinates	+	1	bit	(parity).	For	the		secp256k1	
curve,	the	private	key	is	256-bit	integer	(32	bytes)	and	the	compressed	public	key	is	257-bit	integer	(~	33	bytes).

ECDSA	Sign
The	ECDSA	signing	algorithm	(RFC	6979)	takes	as	input	a	message	msg	+	a	private	key	privKey	and	produces	as
output	a	signature,	which	consists	of	pair	of	integers	{r,	s}.	The	ECDSA	signing	algorithm	is	based	on	the	ElGamal
signature	scheme	and	works	as	follows	(with	minor	simplifications):

1.	 Calculate	the	message	hash,	using	a	cryptographic	hash	function	like	SHA-256:	h	=	hash(msg)
2.	 Generate	securely	a	random	number	k	in	the	range	[1..n-1]

In	case	of	deterministic-ECDSA,	the	value	k	is	HMAC-derived	from	h	+	privKey	(see	RFC	6979)
3.	 Calculate	the	random	point	R	=	k	*	G	and	take	its	x-coordinate:	r	=	R.x

4.	 Calculate	the	signature	proof:	s	=	k ∗ (h+ r ∗ privKey)(modn)

The	modular	inverse	k (modn)	is	an	integer,	such	that	k ∗ k ≡ 1(modn)

5.	 Return	the	signature	{r,	s}.

−1

−1 −1

ECDSA:	Elliptic	Curve	Signatures

157

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://www.secg.org/sec2-v2.pdf
https://tools.ietf.org/html/rfc5639
https://tools.ietf.org/html/rfc6979#section-3.2
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://tools.ietf.org/html/rfc6979#section-3.2

The	calculated	signature	{r,	s}	is	a	pair	of	integers,	each	in	the	range	[1...n-1].	It	encodes	the	random	point	R	=	k	*	G,
along	with	a	proof	s,	confirming	that	the	signer	knows	the	message	h	and	the	private	key	privKey.	The	proof	s	is	by
idea	verifiable	using	the	corresponding	pubKey.

ECDSA	signatures	are	2	times	longer	than	the	signer's	private	key	for	the	curve	used	during	the	signing	process.
For	example,	for	256-bit	elliptic	curves	(like		secp256k1)	the	ECDSA	signature	is	512	bits	(64	bytes)	and	for	521-bit

curves	(like		secp521r1)	the	signature	is	1042	bits.

ECDSA	Verify	Signature
The	algorithm	to	verify	a	ECDSA	signature	takes	as	input	the	signed	message	msg	+	the	signature	{r,	s}	produced
from	the	signing	algorithm	+	the	public	key	pubKey,	corresponding	to	the	signer's	private	key.	The	output	is	boolean
value:	valid	or	invalid	signature.	The	ECDSA	signature	verify	algorithm	works	as	follows	(with	minor	simplifications):

1.	 Calculate	the	message	hash,	with	the	same	cryptographic	hash	function	used	during	the	signing:	h	=	hash(msg)

2.	 Calculate	the	modular	inverse	of	the	signature	proof:	s1	=	s (modn)

3.	 Recover	the	random	point	used	during	the	signing:	R'	=	(h	*	s1)	*	G	+	(r	*	s1)	*	pubKey
4.	 Take	from	R'	its	x-coordinate:	r'	=	R'.x
5.	 Calculate	the	signature	validation	result	by	comparing	whether	r'	==	r

The	general	idea	of	the	signature	verification	is	to	recover	the	point	R'	using	the	public	key	and	check	whether	it	is
same	point	R,	generated	randomly	during	the	signing	process.

How	Does	it	Work?
The	ECDSA	signature	{r,	s}	has	the	following	simple	explanation:

The	signing	signing	encodes	a	random	point	R	(represented	by	its	x-coordinate	only)	through	elliptic-curve
transformations	using	the	private	key	privKey	and	the	message	hash	h	into	a	number	s,	which	is	the	proof	that
the	message	signer	knows	the	private	key	privKey.	The	signature	{r,	s}	cannot	reveal	the	private	key	due	to	the
difficulty	of	the	ECDLP	problem.

The	signature	verification	decodes	the	proof	number	s	from	the	signature	back	to	its	original	point	R,	using	the
public	key	pubKey	and	the	message	hash	h	and	compares	the	x-coordinate	of	the	recovered	R	with	the	r	value
from	the	signature.

The	Math	behind	the	ECDSA	Sign	/	Verify
Read	this	section	only	if	you	like	math.	Most	developer	may	skip	it.

How	does	the	above	sign	/	verify	scheme	work?	It	is	not	obvious,	but	let's	play	a	bit	with	the	equations.

The	equation	behind	the	recovering	of	the	point	R',	calculated	during	the	signature	verification,	can	be	transformed
by	replacing	the	pubKey	with	privKey	*	G	as	follows:

R'	=	(h	*	s1)	*	G	+	(r	*	s1)	*	pubKey	=
=	(h	*	s1)	*	G	+	(r	*	s1)	*	privKey	*	G	=
=	(h	+	r	*	privKey)	*	s1	*	G

If	we	take	the	number	s	=	k ∗ (h+ r ∗ privKey)(modn),	calculated	during	the	signing	process,	we	can	calculate	s1

=	s (modn)	like	this:

−1

−1

−1

ECDSA:	Elliptic	Curve	Signatures

158

s1	=	s (modn)	=

=	(k ∗ (h+ r ∗ privKey)) (modn)	=

=	k ∗ (h+ r ∗ privKey) (modn)

Now,	replace	s1	in	the	point	R'.

R'	=	(h	+	r	*	privKey)	*	s1	*	G	=

=	(h+ r ∗ privKey) ∗ k ∗ (h+ r ∗ privKey) (modn)	*	G	=
=	k	*	G

The	final	step	is	to	compare	the	point	R'	(decoded	by	the	pubKey)	with	the	point	R	(encoded	by	the	privKey).	The
algorithm	in	fact	compares	only	the	x-coordinates	of	R'	and	R:	the	integers	r'	and	r.

It	is	expected	that	r'	==	r	if	the	signature	is	valid	and	r'	≠	r	if	the	signature	or	the	message	or	the	public	key	is
incorrect.

ECDSA:	Public	Key	Recovery	from	Signature
It	is	important	to	know	that	the	ECDSA	signature	scheme	allows	the	public	key	to	be	recovered	from	the	signed
message	together	with	the	signature.	The	recovery	process	is	based	on	some	mathematical	computations
(described	in	the	SECG:	SEC	1	standard)	and	returns	0,	1	or	2	possible	EC	points	that	are	valid	public	keys,
corresponding	to	the	signature.	To	avoid	this	ambiguity,	some	ECDSA	implementations	add	one	additional	bit	v	to	the
signature	during	the	signing	process	and	it	takes	the	form	{r,	s,	v}.	From	this	extended	ECDSA	signature	{r,	s,	v}	+	the
signed	message,	the	signer's	public	key	can	be	restored	with	confidence.

The	public	key	recovery	from	the	ECDSA	signature	is	very	useful	in	bandwidth	constrained	or	storage	constrained
environments	(such	as	blockchain	systems),	when	transmission	or	storage	of	the	public	keys	cannot	be	afforded.	For
example,	the	Ethereum	blockchain	uses	extended	signatures	{r,	s,	v}	for	the	signed	transactions	on	the	chain	to	save
storage	and	bandwidth.

Public	key	recovery	is	possible	for	signatures,	based	on	the	ElGamal	signature	scheme	(such	as	DSA	and	ECDSA).

−1

−1 −1

−1

−1

ECDSA:	Elliptic	Curve	Signatures

159

http://www.secg.org/sec1-v2.pdf

Sign	/	Verify	Messages	using	ECDSA	-	Examples	in
Python
After	we	explained	in	details	how	the	ECDSA	signature	algorithm	works,	now	let's	demonstrate	it	in	practice	with
code	examples.

In	this	example,	we	shall	use	the		pycoin		Python	package,	which	implements	the	ECDSA	signature	algorithm	with

the	curve		secp256k1		(used	in	the	Bitcoin	cryptography),	as	well	as	many	other	functionalities	related	to	the	Bitcoin

blockchain:

pip	install	pycoin

ECDSA	Sign	/	Verify	using	the	secp256k1	Curve	and	SHA3-
256
First,	define	the	functions	for	hashing,	ECDSA	signing	and	ECDSA	signature	verification:

from	pycoin.ecdsa	import	generator_secp256k1,	sign,	verify
import	hashlib,	secrets

def	sha3_256Hash(msg):
				hashBytes	=	hashlib.sha3_256(msg.encode("utf8")).digest()
				return	int.from_bytes(hashBytes,	byteorder="big")

def	signECDSAsecp256k1(msg,	privKey):
				msgHash	=	sha3_256Hash(msg)
				signature	=	sign(generator_secp256k1,	privKey,	msgHash)
				return	signature

def	verifyECDSAsecp256k1(msg,	signature,	pubKey):
				msgHash	=	sha3_256Hash(msg)
				valid	=	verify(generator_secp256k1,	pubKey,	msgHash,	signature)
				return	valid

The	hashing	function		sha3_256Hash(msg)		computes	and	returns	a	SHA3-256	hash,	represented	as	256-bit	integer
number.	It	will	be	used	in	the	sign	/	verify	processes	later.

The		signECDSAsecp256k1(msg,	privKey)		function	takes	a	text	message	and	256-bit	secp256k1	private	key	and
calculates	the	ECDSA	signature	{r,	s}	and	returns	it	as	pair	of	256-bit	integers.	The	ECDSA	signature,	generated	by
the		pycoin		library	by	default	is	deterministic,	as	described	in	RFC	6979.

The		verifyECDSAsecp256k1(msg,	signature,	pubKey)		function	takes	a	text	message,	a	ECDSA	signature	{r,
s}	and	a	2*256-bit	ECDSA	public	key	(uncompressed)	and	returns	whether	the	signature	is	valid	or	not.

Now	let's	demonstrate	the	above	defined	functions	to	sign	a	message	and	verify	its	signature:

#	ECDSA	sign	message	(using	the	curve	secp256k1	+	SHA3-256)
msg	=	"Message	for	ECDSA	signing"
privKey	=	secrets.randbelow(generator_secp256k1.order())
signature	=	signECDSAsecp256k1(msg,	privKey)
print("Message:",	msg)
print("Private	key:",	hex(privKey))
print("Signature:	r="	+	hex(signature[0])	+	",	s="	+	hex(signature[1]))

ECDSA:	Sign	/	Verify	-	Examples

160

https://github.com/richardkiss/pycoin
https://tools.ietf.org/html/rfc6979

#	ECDSA	verify	signature	(using	the	curve	secp256k1	+	SHA3-256)
pubKey	=	(generator_secp256k1	*	privKey).pair()
valid	=	verifyECDSAsecp256k1(msg,	signature,	pubKey)
print("\nMessage:",	msg)
print("Public	key:	("	+	hex(pubKey[0])	+	",	"	+	hex(pubKey[1])	+	")")
print("Signature	valid?",	valid)

#	ECDSA	verify	tampered	signature	(using	the	curve	secp256k1	+	SHA3-256)
msg	=	"Tampered	message"
valid	=	verifyECDSAsecp256k1(msg,	signature,	pubKey)
print("\nMessage:",	msg)
print("Signature	(tampered	msg)	valid?",	valid)

The	output	from	the	above	code	is	like	this:

Message:	Message	for	ECDSA	signing
Private	key:	0x79afbf7147841fca72b45a1978dd7669470ba67abbe5c220062924380c9c364b
Signature:	r=0xb83380f6e1d09411ebf49afd1a95c738686bfb2b0fe2391134f4ae3d6d77b78a,	s=0x6c305af
cac930a3ea1721c04d8a1a979016baae011319746323a756fbaee1811

Message:	Message	for	ECDSA	signing
Public	key:	(0x3804a19f2437f7bba4fcfbc194379e43e514aa98073db3528ccdbdb642e240,	0x6b22d833b9a
502b0e10e58aac485aa357bccd1df6ec0fa4d398908c1ac1920bc)
Signature	valid?	True

Message:	Tampered	message
Signature	(tampered	msg)	valid?	False

As	it	is	visible	from	the	above	output,	the	random	generated	secp256k1	private	key	is	64	hex	digits	(256	bits).	After
signing,	the	obtained	signature	{r,	s}	consists	of	2	*	256-bit	integers.	The	public	key,	obtained	by	multiplying	the
private	key	by	the	curve	generator	point,	consists	of	2	*	256	bits	(uncompressed).	The	produced	ECDSA	digital
signature	verifies	correctly	after	signing.	If	the	message	is	tampered,	the	signature	fails	to	verify.

Public	Key	Recovery	from	the	ECDSA	Signature
As	we	already	know,	in	ECDSA	it	is	possible	to	recover	the	public	key	from	signature.	Let's	demonstrate	this	by
adding	the	following	code	at	the	end	of	the	previous	example:

from	pycoin.ecdsa	import	possible_public_pairs_for_signature

def	recoverPubKeyFromSignature(msg,	signature):
				msgHash	=	sha3_256Hash(msg)
				recoveredPubKeys	=	possible_public_pairs_for_signature(
								generator_secp256k1,	msgHash,	signature)
				return	recoveredPubKeys

msg	=	"Message	for	ECDSA	signing"
recoveredPubKeys	=	recoverPubKeyFromSignature(msg,	signature)
print("\nMessage:",	msg)
print("Signature:	r="	+	hex(signature[0])	+	",	s="	+	hex(signature[1]))
for	pk	in	recoveredPubKeys:
				print("Recovered	public	key	from	signature:	("	+
										hex(pk[0])	+	",	"	+	hex(pk[1])	+	")")

ECDSA:	Sign	/	Verify	-	Examples

161

The	above	code	recovers	the	all	possible	EC	public	keys	from	the	ECDSA	signature	+	the	signed	message,	using
the	algorithm,	described	in	http://www.secg.org/sec1-v2.pdf.	Note	that	multiple	EC	public	keys	(0,	1	or	2)	may	match
the	message	+	signature.	The	expected	output	from	the	above	code	(together	with	the	previous	code)	looks	like	this:

Message:	Message	for	ECDSA	signing
Private	key:	0xc374556584db050001c2c9265b546e66d3dbbe8239d17427c176d834a19638dc
Signature:	r=0xd034c98af3274ad93f3c8ce944bbc17b11b6aa170c5f097ed98687fa0d93347c,	s=0xa2318ce
ea2002caba38efbba3bf8ef8d43236a6edc33c040734d8eb2ed77f608

Message:	Message	for	ECDSA	signing
Public	key:	(0x10b5d9028ec828a0f9111e36f046afa5a0c677357351093426bcec10c663db7d,	0x271763c56
fcd87b72d59ceaa5b9c3fd2122788fe344751a9bde373f903e5bb20)
Signature	valid?	True

Message:	Tampered	message
Signature	(tampered	msg)	valid?	False

Message:	Message	for	ECDSA	signing
Signature:	r=0xd034c98af3274ad93f3c8ce944bbc17b11b6aa170c5f097ed98687fa0d93347c,	s=0xa2318ce
ea2002caba38efbba3bf8ef8d43236a6edc33c040734d8eb2ed77f608
Recovered	public	key	from	signature:	(0x1353fd26a6cb6110980cfd2bb5eca3b3cc3e08c930ad5991395d
d826a250c79,	0xba6825142e230ee1fa2b406f3f9158a47ee49daca8ac47898c5fd92d805a101e)
Recovered	public	key	from	signature:	(0x10b5d9028ec828a0f9111e36f046afa5a0c677357351093426bc
ec10c663db7d,	0x271763c56fcd87b72d59ceaa5b9c3fd2122788fe344751a9bde373f903e5bb20)

It	is	obvious	that	the	recovered	possible	public	keys	are	2:	one	is	equal	to	the	public	key,	matching	the	signer's
private	key,	and	the	other	is	not	(it	matches	the	math	behind	the	public	key	recovery,	but	is	not	the	correct	one).	To
avoid	this	ambiguity,	the	signature	can	be	extended	to	hold	{r,	s,	v},	where	v	holds	the	parity	of	the	y	coordinate	of
the	random	point	R	from	the	ECDSA	signing	algorithm.	This	coordinate	is	lost,	because	the	ECDSA	signature	takes
just	the	x	coordinate	or	R.

Public	Key	Recovery	from	Extended	ECDSA	Signature
To	recover	with	confidence	the	public	key	from	ECDSA	signature	+	message,	we	need	a	library	that	generates
extended	ECDSA	signatures	{r,	s,	v}	and	supports	internally	the	public	key	recovery.	Let's	play	with	the		eth_keys	
Python	library:

pip	install	eth_keys

The	eth_keys	is	part	of	the	Ethereum	project	and	implements	secp256k1-based	ECC	cryptography,	private	and
public	keys,	ECDSA	extended	signatures	{r,	s,	v}	and	Ethereum	blockchain	addresses.	The	following	example
demonstrates	private	key	generation,	message	signing,	public	key	recovery	from	signature	+	message	and	signature
verification:

import	eth_keys,	os

#	Generate	the	private	+	public	key	pair	(using	the	secp256k1	curve)
signerPrivKey	=	eth_keys.keys.PrivateKey(os.urandom(32))
signerPubKey	=	signerPrivKey.public_key
print('Private	key	(64	hex	digits):',	signerPrivKey)
print('Public	key	(uncompressed,	128	hex	digits):',	signerPubKey)

ECDSA:	Sign	/	Verify	-	Examples

162

http://www.secg.org/sec1-v2.pdf
https://github.com/ethereum/eth-keys/

#	ECDSA	sign	message	(using	the	curve	secp256k1	+	Keccak-256)
msg	=	b'Message	for	signing'
signature	=	signerPrivKey.sign_msg(msg)
print('Message:',	msg)
print('Signature:	[r	=	{0},	s	=	{1},	v	=	{2}]'.format(
				hex(signature.r),	hex(signature.s),	hex(signature.v)))

#	ECDSA	public	key	recovery	from	signature	+	verify	signature
#	(using	the	curve	secp256k1	+	Keccak-256	hash)
msg	=	b'Message	for	signing'
recoveredPubKey	=	signature.recover_public_key_from_msg(msg)
print('Recovered	public	key	(128	hex	digits):',	recoveredPubKey)
print('Public	key	correct?',	recoveredPubKey	==	signerPubKey)
valid	=	signerPubKey.verify_msg(msg,	signature)
print("Signature	valid?",	valid)

The	output	from	the	above	code	looks	like	this:

Private	key	(64	hex	digits):	0x68abc765746a33272e47b0a96a0b4184048f70354221e04219fbc223bfe79
794
Public	key	(uncompressed,	128	hex	digits):	0x30a6dc572da312587144e7ccda1e9abd901323adebe7091
bb4985e1202c2a10bc25f681b3d2e1a671438f0b125287b473c09ca345c5583cd627232b536b9ca0a
Message:	b'Message	for	signing'
Signature:	[r	=	0x4cddf146c578d20a31fa6128e5d9afe6ac666e5ef5899f2767cacb56a42703cc,	s	=	0x38
47036857aa3f077a2e142eee707e5af2653baa99b9d10764a0be3d61595dbb,	v	=	0x0]
Recovered	public	key	(128	hex	digits):	0x30a6dc572da312587144e7ccda1e9abd901323adebe7091bb49
85e1202c2a10bc25f681b3d2e1a671438f0b125287b473c09ca345c5583cd627232b536b9ca0a
Public	key	correct?	True
Signature	valid?	True

The	public	key	recovery	will	always	be	successful,	because	there	is	no	ambiguity	with	the	extended	ECDSA
signature.	The	signature	verification	will	be	successful,	unless	the	message,	the	public	key	or	the	signature	is
tampered.	You	are	free	to	play	with	the	above	code,	to	change	it,	to	tamper	the	signed	message	and	to	see	what
happens.	Enjoy!

ECDSA:	Sign	/	Verify	-	Examples

163

Exercises:	Sign	/	Verify	Messages	using	ECDSA	and
the	NIST	P-521	Curve
In	this	exercise	we	shall	sign	and	verify	messages	using	the	ECDSA	digital	signature	algorithm	and	the	NIST	P-521
curve.	The	NIST	P-521	elliptic	curve,	known	also	as		secp521r1		is	521-bit	ECC	curve,	suitable	for	ECDSA	digital

signatures	and	ECDH	key	agreement.	It	uses	521-bit	private	keys	(encoded	as	65-66	bytes,	130-132	hex	digits)	and
1042-bit	public	keys	(uncompressed,	encoded	as	130-131	bytes,	260-261	hex	digits).	The	produced	signature	is
132	bytes	(264	hex	digits).

Sign	a	Message	with	ECDSA	/	P-521
Write	a	program	to	sign	a	message	by	given	private	key.	The	input	consists	of	2	text	lines:	message	and	private
key.	The	message	is	given	as	text	and	the	private	key	is	given	as	hex	string	(130-132	hex	digits).	Use	the	ECDSA
deterministic	signing	(following	RFC	6979)	and	the	curve	NIST	P-521,	which	also	known	as	secp521r1.	Print	the
output	as	JSON	document,	holding	the	input	message	+	the	public	key	of	the	signer	(as	hex	string,	uncompressed)
+	the	ECDSA	digital	signature	(as	hex	string).

Sample	input:

Message	for	ECDSA-NIST-521p	signing
00135799f9d1f033af26168780bf2503313acff854c44031321d7a29bba96edb3c1b93b9deea55229b1de058196a
d69a79c01463e3281d9fcc82afd73aac7fdfa4af

Sample	output:

{
		"msg":	"Message	for	ECDSA-NIST-521p	signing",
		"pubKey":"0078a6bb6732cb3134d2ca3912b2876fe005b20027037512cf972605f58ce5908471a1f9817c8d24
290fcc943951f3113a7ee3716bd95f0b9c7326843a833ac6a0750021f08f88a6bd397525068300801521d2d97fea
32f2c8b0c74dc8e231a4dd73252c4a7398e25ab20dba0a9df3df0c256617e004a9623676b9f3f9a3aa21f57c90ce
",
		"signature":"00202029ab1a3326fe7d1e9ec36d7fab048e833c6c3cad37e1d5294695d28e9fd5583c23edaee
cb596782a4c85bac27780623c1a9216202f3828991cbeebbeb049d9008270ea623d8d26c5ab89b621bac12c7fa8e
9193e4057e16617f80cfc4279537f45169fb949deb3f9936400a130f6859aaa9c929e47c66610e59cc71a9f7ea79
e81"
}

Verify	Message	Signature	with	ECDSA	/	P-521
Write	a	program	to	validate	the	ECDSA	digital	signature,	created	by	the	previous	exercise.	The	input	comes	as
JSON	document,	holding	the	message	+	the	public	key	(uncompressed,	hex	string)	+	the	signature.	Use	the	P-521
elliptic	curve	(secp521r1).	Print	as	output	a	single	word:	"valid'	or	"invalid".

Sample	input	(correctly	signed	message):

{
		"msg":	"Message	for	ECDSA-NIST-521p	signing",
		"pubKey":"0078a6bb6732cb3134d2ca3912b2876fe005b20027037512cf972605f58ce5908471a1f9817c8d24
290fcc943951f3113a7ee3716bd95f0b9c7326843a833ac6a0750021f08f88a6bd397525068300801521d2d97fea
32f2c8b0c74dc8e231a4dd73252c4a7398e25ab20dba0a9df3df0c256617e004a9623676b9f3f9a3aa21f57c90ce
",
		"signature":"00202029ab1a3326fe7d1e9ec36d7fab048e833c6c3cad37e1d5294695d28e9fd5583c23edaee
cb596782a4c85bac27780623c1a9216202f3828991cbeebbeb049d9008270ea623d8d26c5ab89b621bac12c7fa8e

Exercises:	ECDSA	Sign	and	Verify

164

https://tools.ietf.org/html/rfc6979

9193e4057e16617f80cfc4279537f45169fb949deb3f9936400a130f6859aaa9c929e47c66610e59cc71a9f7ea79
e81"
}

Sample	output:

valid

Sample	input	(tampered	message):

{
		"msg":	"Tampered	message",
		"pubKey":"0078a6bb6732cb3134d2ca3912b2876fe005b20027037512cf972605f58ce5908471a1f9817c8d24
290fcc943951f3113a7ee3716bd95f0b9c7326843a833ac6a0750021f08f88a6bd397525068300801521d2d97fea
32f2c8b0c74dc8e231a4dd73252c4a7398e25ab20dba0a9df3df0c256617e004a9623676b9f3f9a3aa21f57c90ce
",
		"signature":"00202029ab1a3326fe7d1e9ec36d7fab048e833c6c3cad37e1d5294695d28e9fd5583c23edaee
cb596782a4c85bac27780623c1a9216202f3828991cbeebbeb049d9008270ea623d8d26c5ab89b621bac12c7fa8e
9193e4057e16617f80cfc4279537f45169fb949deb3f9936400a130f6859aaa9c929e47c66610e59cc71a9f7ea79
e81"
}

Sample	output:

invalid

Exercises:	ECDSA	Sign	and	Verify

165

EdDSA	and	Ed25519:	Elliptic	Curve	Digital	Signatures
EdDSA	(Edwards-curve	Digital	Signature	Algorithm)	is	a	modern	and	secure	digital	signature	algorithm	based	on
performance-optimized	elliptic	curves,	such	as	the	255-bit	curve	Curve25519	and	the	448-bit	curve	Curve448-
Goldilocks.	The	EdDSA	signatures	use	the	Edwards	form	of	the	elliptic	curves	(for	performance	reasons),
respectively		edwards25519		and		edwards448	.	The	EdDSA	algorithm	is	based	on	the	Schnorr	signature
algorithm	and	relies	on	the	difficulty	of	the	ECDLP	problem.

The	EdDSA	signature	algorithm	and	its	variants	Ed25519	and	Ed448	are	technically	described	in	the	RFC	8032.

EdDSA	Key	Generation
Ed25519	and	Ed448	use	small	private	keys	(32	or	57	bytes	respectively),	small	public	keys	(32	or	57	bytes)	and
small	signatures	(64	or	114	bytes)	with	high	security	level	at	the	same	time	(128-bit	or	224-bit	respectively).

Assume	the	elliptic	curve	for	the	EdDSA	algorithm	comes	with	a	generator	point	G	and	a	subgroup	order	q	for	the	EC
points,	generated	from	G.

The	EdDSA	key-pair	consists	of:

private	key	(integer):	privKey
public	key	(EC	point):	pubKey	=	privKey	*	G

The	private	key	is	generated	from	a	random	integer,	known	as	seed	(which	should	have	similar	bit	length,	like	the
curve	order).	The	seed	is	first	hashed,	then	the	last	few	bits,	corresponding	to	the	curve	cofactor	(8	for	Ed25519	and
4	for	X448)	are	cleared,	then	the	highest	bit	is	cleared	and	the	second	highest	bit	is	set.	These	transformations
guarantee	that	the	private	key	will	always	belong	to	the	same	subgroup	of	EC	points	on	the	curve	and	that	the	private
keys	will	always	have	similar	bit	length	(to	protect	from	timing-based	side-channel	attacks).	For	Ed25519	the	private
key	is	32	bytes.	For	Ed448	the	private	key	is	57	bytes.

The	public	key	pubKey	is	a	point	on	the	elliptic	curve,	calculated	by	the	EC	point	multiplication:	pubKey	=	privKey	*
G	(the	private	key,	multiplied	by	the	generator	point	G	for	the	curve).	The	public	key	is	encoded	as	compressed	EC
point:	the	y-coordinate,	combined	with	the	lowest	bit	(the	parity)	of	the	x-coordinate.	For	Ed25519	the	public	key	is	32
bytes.	For	Ed448	the	public	key	is	57	bytes.

EdDSA	Sign
The	EdDSA	signing	algorithm	(RFC	8032)	takes	as	input	a	text	message	msg	+	the	signer's	EdDSA	private	key
privKey	and	produces	as	output	a	pair	of	integers	{R,	s}.	EdDSA	signing	works	as	follows	(with	minor	simplifications):

	EdDSA_sign(msg,	privKey)	-->	{	R,	s	}	

1.	 Calculate	pubKey	=	privKey	*	G
2.	 Deterministically	generate	a	secret	integer	r	=	hash(hash(privKey)	+	msg)	mod	q	(this	is	a	bit	simplified)
3.	 Calculate	the	public	key	point	behind	r	by	multiplying	it	by	the	curve	generator:	R	=	r	*	G
4.	 Calculate	h	=	hash(R	+	pubKey	+	msg)	mod	q
5.	 Calculate	s	=	(r	+	h	*	privKey)	mod	q
6.	 Return	the	signature	{	R,	s	}

The	produced	digital	signature	is	64	bytes	(32	+	32	bytes)	for	Ed25519	and	114	bytes	(57	+	57	bytes)	for	Ed448.	It
holds	a	compressed	point	R	+	the	integer	s	(confirming	that	the	signer	knows	the	msg	and	the	privKey).

EdDSA	Verify	Signature

EdDSA	and	Ed25519

166

https://en.wikipedia.org/wiki/Curve25519
https://en.wikipedia.org/wiki/Curve448
https://en.wikipedia.org/wiki/Schnorr_signature
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8032#page-13

The	EdDSA	signature	verification	algorithm	(RFC	8032)	takes	as	input	a	text	message	msg	+	the	signer's	EdDSA
public	key	pubKey	+	the	EdDSA	signature	{R,	s}	and	produces	as	output	a	boolean	value	(valid	or	invalid	signature).
EdDSA	verification	works	as	follows	(with	minor	simplifications):

	EdDSA_signature_verify(msg,	pubKey,	signature	{	R,	s	})	-->	valid	/	invalid	

1.	 Calculate	h	=	hash(R	+	pubKey	+	msg)	mod	q
2.	 Calculate	P1	=	s	*	G
3.	 Calculate	P2	=	R	+	h	*	pubKey
4.	 Return	P1	==	P2

How	Does	it	Work?
During	the	verification	the	point	P1	is	calculated	as:	P1	=	s	*	G.

During	the	signing	s	=	(r	+	h	*	privKey)	mod	q.	Now	replace	s	in	the	above	equation:

P1	=	s	*	G	=	(r	+	h	*	privKey)	mod	q	*	G	=	r	*	G	+	h	*	privKey	*	G	=	R	+	h	*	pubKey

The	above	is	exactly	the	other	point	P2.	If	these	points	P1	and	P2	are	the	same	EC	point,	this	proves	that	the	point
P1,	calculated	by	the	private	key	matches	the	point	P2,	created	by	its	corresponding	public	key.

ECDSA	vs	EdDSA
If	we	compare	the	signing	and	verification	for	EdDSA,	we	shall	find	that	EdDSA	is	simpler	than	ECDSA,	easier	to
understand	and	to	implement.	Both	signature	algorithms	have	similar	security	strength	for	curves	with	similar	key
lengths.	For	the	most	popular	curves	(liked		edwards25519		and		edwards448)	the	EdDSA	algorithm	is	slightly
faster	than	ECDSA,	but	this	highly	depends	on	the	curves	used	and	on	the	certain	implementation.	Unlike	ECDSA
the	EdDSA	signatures	do	not	provide	a	way	to	recover	the	signer's	public	key	from	the	signature	and	the	message.
Generally,	it	is	considered	that	EdDSA	is	recommended	for	most	modern	apps.

EdDSA	and	Ed25519

167

https://tools.ietf.org/html/rfc8032#page-13

Sign	/	Verify	Messages	using	EdDSA	-	Examples	in
Python
After	we	explained	in	the	previous	section	how	the	EdDSA	signatures	work,	now	it	is	time	to	demonstrate	them	with
code	examples.	First,	we	shall	demonstrated	how	to	use	Ed25519	signatures.

Ed25519	Signatures	-	Example
We	shall	use	the	Python	library		ed25519	,	which	is	based	on	the	Bernstein's	original	optimized	highly	optimized	C

implementation	of	the	Ed25519	signature	algorithm	(EdDSA	over	the	Curve25519	in	Edwards	form):

pip	install	ed25519

Next,	generate	a	private	+	public	key	pair	for	the	Ed25519	cryptosystem,	sign	a	sample	message,	and	verify	the
signature:

import	ed25519

privKey,	pubKey	=	ed25519.create_keypair()
print("Private	key	(32	bytes):",	privKey.to_ascii(encoding='hex'))
print("Public	key	(32	bytes):	",	pubKey.to_ascii(encoding='hex'))

msg	=	b'Message	for	Ed25519	signing'
signature	=	privKey.sign(msg,	encoding='hex')
print("Signature	(64	bytes):",	signature)

try:
				pubKey.verify(signature,	msg,	encoding='hex')
				print("The	signature	is	valid.")
except:
				print("Invalid	signature!")

The	output	from	the	above	sample	code	looks	like	this:

Private	key	(32	bytes):	b'1498b5467a63dffa2dc9d9e069caf075d16fc33fdd4c3b01bfadae6433767d93'
Public	key	(32	bytes):		b'b7a3c12dc0c8c748ab07525b701122b88bd78f600c76342d27f25e5f92444cde'
Signature	(64	bytes):	b'6dd355667fae4eb43c6e0ab92e870edb2de0a88cae12dbd8591507f584fe4912babf
f497f1b8edf9567d2483d54ddc6459bea7855281b7a246a609e3001a4e08'
The	signature	is	valid.

The	Ed25519	key	pair	is	generated	randomly:	first	a	32-byte	random	seed	is	generated,	then	the	private	key	is
derived	from	the	seed,	then	the	public	key	is	derived	from	the	private	key.	The	hash	function	for	key	generation	is
SHA-512.

The	private	key	is	encoded	as	64	hex	digits	(32	bytes).	The	public	key	is	encoded	also	as	64	hex	digits	(32	bytes).
The	EdDSA-Ed25519	signature	{R,	s}	is	32	+	32	bytes	(64	bytes,	128	hex	digits).

If	we	try	to	verify	a	tampered	message,	the	verification	will	fail:

try:
				pubKey.verify(signature,	"Tampered	msg",	encoding='hex')
				print("The	signature	is	valid.")
except:

EdDSA:	Sign	/	Verify	-	Examples

168

https://github.com/warner/python-ed25519

				print("Invalid	signature!")

The	output	from	the	above	sample	code	is	as	expected:

Invalid	signature!

Ed448	Signatures	-	Example
Now,	let's	demonstrate	how	to	use	the	Ed448	signature	(EdDSA	over	the	Curve448-Goldilocks	curve	in	Edwards
form).

We	shall	use	the	Python	elliptic	curve	library		ECPy	,	which	implements	ECC	with	Weierstrass	curves	(like

	secp256k1		and		NIST	P-256),	Montgomery	curves	(like		Curve25519		and		Curve448)	and	twisted	Edwards

curves	(like		Ed25519		and		Ed448):

pip	install	ecpy

Next,	generate	a	private	+	public	key	pair	for	the	Ed448	cryptosystem:

from	ecpy.curves	import	Curve
from	ecpy.keys	import	ECPrivateKey
from	ecpy.eddsa	import	EDDSA
import	secrets,	hashlib,	binascii

curve	=	Curve.get_curve('Ed448')
signer	=	EDDSA(hashlib.shake_256,	hash_len=114)
privKey	=	ECPrivateKey(secrets.randbits(57*8),	curve)
pubKey	=	signer.get_public_key(privKey,	hashlib.shake_256,	hash_len=114)
print("Private	key	(57	bytes):",	privKey)
print("Public	key	(compressed,	57	bytes):	",
						binascii.hexlify(curve.encode_point(pubKey.W)))
print("Public	key	(point):	",	pubKey)

The	Ed448	key	pair	is	generated	randomly.	According	to	RFC	8032	the	Ed448	private	key	is	generated	from	57-byte
random	seed,	which	is	transformed	to	57-byte	public	key	using	the	SHAKE256(x,	hash_len=114)	hash	function,
along	with	EC	point	multiplication	and	the	special	key	encoding	rules	for	Ed448.

The	output	from	the	above	sample	code	may	look	like	this:

Private	key	(57	bytes):	ECPrivateKey:
		d:	625d3edeb5cd69b20b0b6387c3522a21d356ac40b408e34fb2f8442e2c91eee3f877afe583a2fd11770567d
f69178019d6fbc6357c35eefa3e
Public	key	(compressed,	57	bytes):		b'261d23911e194ed0cb7f9233568e906d6abcf4d60f73451ca80763
6d8fa6e4ea5ca12f51d240299a0b86a61ccb2174ce4ed2a8c4f7a8cced00'
Public	key	(point):		ECPublicKey:
		x:	cb5aec366d6b3293354418f8abf67bd5aaf46b49ff9c2154fbc14d9ca22fe93b680954f27c10fed3327ef51
c8bce5d2522f41fd554731d88
		y:	edcca8f7c4a8d24ece7421cb1ca6860b9a2940d2512fa15ceae4a68f6d6307a81c45730fd6f4bc6a6d908e5
633927fcbd04e191e91231d26

The	private	key	is	encoded	as	114	hex	digits	(57	bytes).	The	public	key	is	encoded	also	as	114	hex	digits	(57
bytes),	in	compressed	form.	In	the	above	example	the	public	key	EC	point	is	printed	also	in	uncompressed	format	(x
and	y	coordinates).	The	EdDSA-Ed448	signature	{R,	s}	consists	of	57	+	57	bytes	(114	bytes,	228	hex	digits).

EdDSA:	Sign	/	Verify	-	Examples

169

https://github.com/cslashm/ECPy
https://tools.ietf.org/html/rfc8032#page-19

Next,	sign	a	sample	message	using	the	private	key,	and	verify	the	signature	using	the	public	key	after	that:

msg	=	b'Message	for	Ed448	signing'
signature	=	signer.sign(msg,	privKey)
print("Signature	(114	bytes):",	binascii.hexlify(signature))

valid	=	signer.verify(msg,	signature,	pubKey)
print("Valid	signature?",	valid)

The	output	from	the	above	code	example	(for	the	above	Ed448	key	pair)	is:

Signature	(114	bytes):	b'5114674f1ce8a2615f2b15138944e5c58511804d72a96260ce8c587e7220daa90b9
e65b450ff49563744d7633b43a78b8dc6ec3e3397b50080a15f06ce8005ad817a1681a4e96ee6b4831679ef448d7
c283b188ed64d399d6bac420fadf33964b2f2e0f2d1abd401e8eb09ab29e3ff280600'
Valid	signature?	True

The	signature	is	deterministic:	the	same	message	with	the	same	private	key	produces	the	same	signature.

If	we	try	to	verify	the	same	signature	with	a	tampered	message,	the	verification	will	fail:

valid	=	signer.verify(b'Tampered	msg',	signature,	pubKey)
print("Valid	signature?",	valid)

The	output	from	the	above	sample	code	is	as	expected:

Valid	signature?	False

EdDSA:	Sign	/	Verify	-	Examples

170

Exercises:	Sign	/	Verify	Messages	using	Ed25519
In	this	exercise	we	shall	sign	and	verify	messages	using	the	EdDSA	digital	signature	algorithm	and	the
	edwards25519		curve,	following	the	technical	specification	from	RFC	8032.	The	Ed25519	digital	signature	algorithm
can	be	found	as	library	for	the	most	programming	languages.

The	Ed25519	private	key	is	encoded	as	64	hex	digits	(32	bytes).	The	corresponding	Ed25519	public	key	is	encoded
also	as	64	hex	digits	(32	bytes).	The	EdDSA-Ed25519	signature	{R,	s}	consists	of	32	+	32	bytes	(64	bytes,	128	hex
digits).

EdDSA-Ed25519:	Sign	Message
Write	a	program	to	sign	given	text	message	with	given	private	key.	The	input	consists	of	2	text	lines.	The	first	line
holds	the	input	message	for	signing.	The	second	line	holds	the	private	key	as	hex	string.	Print	the	output	as	JSON
document,	holding	the	input	message	+	the	public	key	of	the	signer	(as	hex	string,	uncompressed)	+	the	Ed25519
digital	signature	(as	hex	string).

Sample	input:

Message	for	Ed25519	signing
de6d730f36a8607b8bfdaa79b3b1127291f1d50552c2fe05c5254a9719105c4a

Sample	output:

{
		"msg":	"Message	for	Ed25519	signing",
		"pubKey":"7721a5832cb70cce1a960cf236d50a0e862555ccad400b5fee0bcf777f7ab476",
		"signature":"6c4adbba332b5db520c0ec95433ea136f70fe2d50e8955a7049d216626a3491c0e5cbfefb8d77
9687cc9811311ccaf7cd07a0e96a570fb3a4b680a4ead60c602"
}

EdDSA-Ed25519:	Verify	Signature
Write	a	program	to	validate	the	Ed25519	digital	signature,	created	by	the	previous	exercise.	The	input	comes	as
JSON	document,	holding	the	message	+	the	public	key	(uncompressed,	hex	string)	+	the	signature.	Print	as	output
a	single	word:	"valid'	or	"invalid".

Sample	input	(correctly	signed	message):

{
		"msg":	"Message	for	Ed25519	signing",
		"pubKey":"7721a5832cb70cce1a960cf236d50a0e862555ccad400b5fee0bcf777f7ab476",
		"signature":"6c4adbba332b5db520c0ec95433ea136f70fe2d50e8955a7049d216626a3491c0e5cbfefb8d77
9687cc9811311ccaf7cd07a0e96a570fb3a4b680a4ead60c602"
}

Sample	output:

valid

Sample	input	(tampered	message):

{
		"msg":	"Tampered	msg",

Exercises:	EdDSA	Sign	and	Verify

171

https://tools.ietf.org/html/rfc8032#page-9

		"pubKey":"7721a5832cb70cce1a960cf236d50a0e862555ccad400b5fee0bcf777f7ab476",
		"signature":"6c4adbba332b5db520c0ec95433ea136f70fe2d50e8955a7049d216626a3491c0e5cbfefb8d77
9687cc9811311ccaf7cd07a0e96a570fb3a4b680a4ead60c602"
}

Sample	output:

invalid

Exercises:	EdDSA	Sign	and	Verify

172

Quantum	Computers	and	Quantum-Safe	Cryptography
Quantum	computers	are	...

TODO

TODO

TODO

It	is	well	known	in	computer	science	that	quantum	computers	will	break	some	cryptographic	algorithms,
especially	the	public-key	cryptosystems	like	RSA,	ECC	and	ECDSA	that	rely	on	the	IFP	(integer	factorization
problem),	the	DLP	(discrete	logarithms	problem)	and	the	ECDLP	(elliptic-curve	discrete	logarithm	problem).	Quantum
algorithms	will	not	be	the	end	of	cryptography,	because:

Only	some	cryptosystems	are	quantum-unsafe	(like	RSA,	DHKE,	ECC,	ECDSA	and	ECDH).
Some	cryptosystems	are	quantum-safe	and	will	be	only	slightly	affected	(like	cryptographic	hashes,	MAC
algorithms	and	symmetric	key	ciphers).

Let's	discuss	this	in	details.

Quantum-Safe	and	Quantum-Broken	Crypto	Algorithms
Most	cryptographic	hashes	(like	SHA2,	SHA3,	BLAKE2),	MAC	algorithms	(like	HMAC	and	CMAK),	key-derivation
functions	(bcrypt,	Scrypt,	Argon2)	are	basically	quantum-safe	(only	slightly	affected	by	quantum	computing).

Use	384-bits	or	more	to	be	quantum-safe	(256-bits	should	be	enough	for	long	time)

Symmetric	ciphers	(like	AES-256,	Twofish-256)	are	quantum-safe.

Use	256-bits	or	more	as	key	length	(don't	use	128-bit	AES)

Most	popular	public-key	cryptosystems	(like	RSA,	DSA,	ECDSA,	EdDSA,	DHKE,	ECDH,	ElGamal)	are	quantum-
broken!

Most	digital	signature	algorithms	(like	RSA,	ECDSA,	EdDSA)	are	quantum-broken!
Quantum-safe	signature	algorithms	and	public-key	cryptosystems	are	already	developed	(e.g.	lattice-based	or
hash-based	signatures),	but	are	not	massively	used,	because	of	longer	keys	and	longer	signatures	than	ECC.

See	https://en.wikipedia.org/wiki/Post-quantum_cryptography

...

Quantum-Resistant	Crypto	Algorithms

...

ECC	Cryptography	and	Most	Digital	Signatures	are
Quantum-Broken!
...

A	k-bit	number	can	be	factored	in	time	of	order	O(k^3)	using	a	quantum	computer	of	5k+1	qubits	(using	Shor's
algorithm).

See	http://www.theory.caltech.edu/~preskill/pubs/preskill-1996-networks.pdf

256-bit	number	(e.g.	Bitcoin	public	key)	can	be	factorized	using	1281	qubits	in	72*256^3	quantum	operations.

~	1.2	billion	operations	==	~	less	than	1	second	using	good	machine

Quantum-Safe	Cryptography

173

https://en.wikipedia.org/wiki/Post-quantum_cryptography
http://www.theory.caltech.edu/~preskill/pubs/preskill-1996-networks.pdf

ECDSA,	DSA,	RSA,	ElGamal	cryptosystems	are	all	quantum-broken

Conclusion:	publishing	the	signed	transactions	(like	Ethereum	does)	is	not	quantum	safe	->	avoid	revealing	the	ECC
public	key

Hashes	are	Quantum	Safe
Cryptographic	hashes	(like	SHA2,	SHA3,	BLAKE2)	are	considered	quantum-safe:

On	traditional	computer,	finding	a	collision	for	256-bit	hash	takes	√2^256	steps	(using	the	birthday	attack)	->
SHA256	has	2^128	crypto-strength
Quantum	computers	might	find	hash	collisions	in	∛2^256	operations	(see	the	BHT	algorithm),	but	this	is	disputed
(see	[Bernstein	2009]	-	http://cr.yp.to/hash/collisioncost-20090823.pdf\
On	theory	it	might	take	2^85	quantum	operations	to	find	SHA256	/	SHA3-256	collision,	but	in	practice	it	may	cost
significantly	more.

Conclusion:	SHA256	/	SHA3-256	are	most	probably	quantum-safe

SHA384,	SHA512	and	SHA3-384,	SHA3-512	are	quantum-safe

...

Symmetric	Ciphers	are	Quantum	Safe
...

Most	symmetric	ciphers	(like	AES	and	ChaCha20)	are	quantum-safe:

[Grover's	algorithm]([https://en.wikipedia.org/wiki/Grover's_algorithm]
(https://en.wikipedia.org/wiki/Grover's_algorithm)\)	finds	AES	secret	key	using	√	quantum	operations

Quantum	era	will	double	the	key	size	of	the	symmetric	ciphers	(see	http://cr.yp.to/codes/grovercode-
20100303.pdf\

AES-256	in	the	post-quantum	era	is	like	AES-128	before

128-bits	or	less	symmetric	ciphers	are	quantum-attackable

Conclusion:	256-bit	symmetric	ciphers	are	quantum	safe

AES-256,	ChaCha20-256,	Twofish-256,	Camellia-256	are	considered	quantum-safe

Post-Quantum	Cryptography
...

Quantum-Safe	key	agreement:	https://en.wikipedia.org/wiki/CECPQ1

https://ianix.com/pqcrypto/pqcrypto-deployment.html

https://pqcrypto.org/

Post-quantum	signature	scheme	XMSS:

https://tools.ietf.org/html/rfc8391
JS	XMSS	-	https://www.npmjs.com/package/xmss
Post-quantum	key	agreement	schemes	McEliece	and	NewHope

Post-quantum	signatures	and	key	agreements	(XMSS,	McEliece,	NewHope):
https://github.com/randombit/botan

Quantum-Safe	Cryptography

174

https://en.wikipedia.org/wiki/Birthday_attack
https://arxiv.org/pdf/quant-ph/9705002.pdf
http://cr.yp.to/hash/collisioncost-20090823.pdf%29\
https://en.wikipedia.org/wiki/Grover's_algorithm]%28https://en.wikipedia.org/wiki/Grover's_algorithm%29\
http://cr.yp.to/codes/grovercode-20100303.pdf%29\
https://en.wikipedia.org/wiki/CECPQ1
https://ianix.com/pqcrypto/pqcrypto-deployment.html
https://pqcrypto.org/
https://legacy.gitbook.com/book/svetlin-nakov/practical-cryptography-for-developers/edit
https://www.npmjs.com/package/xmss
https://github.com/randombit/botan

QC-MDPC	and	libPQC	are	quantum-broken:	https://eprint.iacr.org/2016/858.pdf

Hash-Based	Public-Key	Cryptography
...

Code-Based	Public-Key	Cryptography
...

Lattice-Based	Public-Key	Cryptography
...

Multivariate-Quadratic-Equations	Public-Key	Cryptography
MQE

...

SPHINCS+	Signatures	in	Python
https://github.com/sphincs/pyspx

https://pypi.org/project/PySPX/

NewHope	Key	Exchange	in	Python
https://github.com/anupsv/NewHope-Key-Exchange

https://github.com/scottwn/PyNewHope

Quantum-Safe	Cryptography

175

https://eprint.iacr.org/2016/858.pdf
https://github.com/sphincs/pyspx
https://pypi.org/project/PySPX/
https://github.com/anupsv/NewHope-Key-Exchange
https://github.com/scottwn/PyNewHope

Quantum-Safe	Signatures	-	Examples	in	Python
...

TODO

...

Quantum-Safe	Signatures	-	Example

176

More	Cryptographic	Concepts	for	Developers
...

Digital	Certificates,	the	X.509	Standard	and	PKI
...

https://cryptography.io/en/latest/x509/

Transport	Layer	Security	(TLS)	and	SSL
...

https://en.wikipedia.org/wiki/Transport_Layer_Security

External	Authorization	and	OAuth
...

Two-Factor	Authentication	and	One-Time	Passwords
https://cryptography.io/en/latest/hazmat/primitives/twofactor/

https://tools.ietf.org/html/rfc4226.html

Infected	Cryptosystems	and	Crypto	Backdoors

https://en.wikipedia.org/wiki/Kleptography

More	Cryptographic	Concepts

177

https://cryptography.io/en/latest/x509/
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://cryptography.io/en/latest/hazmat/primitives/twofactor/
https://tools.ietf.org/html/rfc4226.html
https://en.wikipedia.org/wiki/Kleptography

X.509	Digital	certificates	-	Examples	in	Python
...

Generate	X.509	self-signed	certificate

Dump	certificate	data	from	the	Python	code

...

Digital	Certificates	-	Example

178

TLS	(Transport	Layer	Security)	-	Examples	in	Python
...

Connect	to	HTTPS	server	and	download	resource.

Display	the	server	certificate	+	the	public	key.

Display	info	about	the	TLS	cipher	suite.

...

TLS	-	Example

179

One-Time	Passwords	(OTP)	-	Examples	in	Python
...

One-Time	Passwords	(OTP)	-	Example

180

Cryptographic	Libraries	for	JavaScript,	Python,	C#	and
Java

Cryptography	in	JavaScript
ECDSA,	elliptic.js,	js-sha3.js

Cryptography	libraries	in	Python
ECDSA,	eth_keys

C#	and	.NET	cryptography
Bouncy	Castle	.NET,	Nethereum

Java	cryptography
JCA,	Bouncy	Castle,	Web3j

C	and	C++	cryptography
Crypto++,	OpenSSL	bindings,	Nettle,	libgcrypt

TODO:

OpenSSL	-	https://en.wikipedia.org/wiki/OpenSSL
LibSodium
Crypto++
Lingcrypt	-	https://en.wikipedia.org/wiki/Libgcrypt
Bouncy	Castle
Nettle	-	https://git.lysator.liu.se/nettle/nettle
Others...

Summary
JavaScript	and	Python	provide	simple	cryptography	libraries

Hashes,	ECC,	ECDSA,	AES,	and	many	more
Cryptography	is	C#	is	heavy

Use	Bouncy	Castle	.NET	for	general	crypto
Or	Nethereum	for	simplified	secp256k1

Cryptography	in	Java	is	heavy

JCA	and	Bouncy	Castle	are	hard	to	use
Web3j	is	simplifies	library	for	secp256k1

...

Crypto	Libraries	for	Developers

181

https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/Libgcrypt
https://git.lysator.liu.se/nettle/nettle

JavaScript	Crypto	Libraries
...

Cryptography	in	JavaScript
ECDSA	with	elliptic.js	and	js-sha3

ECDSA	in	JavaScript:	Generate	/	Load	Keys
npm	install	elliptic
npm	install	js-sha3

...

let	elliptic	=	require('elliptic');
let	sha3	=	require('js-sha3');
let	ec	=	new	elliptic.ec('secp256k1');

//	let	keyPair	=	ec.genKeyPair();	//	Generate	random	keys
let	keyPair	=	ec.keyFromPrivate(
	"97ddae0f3a25b92268175400149d65d6887b9cefaf28ea2c078e05cdc15a3c0a");
let	privKey	=	keyPair.getPrivate("hex");
let	pubKey	=	keyPair.getPublic();
console.log(`Private	key:	${privKey}`);
console.log("Public	key	:",	pubKey.encode("hex").substr(2));
console.log("Public	key	(compressed):",
				pubKey.encodeCompressed("hex"));

ECDSA	in	JavaScript:	Sign	Message
let	msg	=	'Message	for	signing';
let	msgHash	=	sha3.keccak256(msg);
let	signature	=	
		ec.sign(msgHash,	privKey,	"hex",	{canonical:	true});

console.log(`Msg:	${msg}`);
console.log(`Msg	hash:	${msgHash}`);
console.log("Signature:",	signature);

Complete	example:https://gist.github.com/nakov/1dcbe26988e18f7a4d013b65d8803ffc

ECDSA	in	JavaScript:	Verify	Signature
let	hexToDecimal	=	(x)	=>	ec.keyFromPrivate(x,	"hex")
		.getPrivate().toString(10);
let	pubKeyRecovered	=	ec.recoverPubKey(
		hexToDecimal(msgHash),	signature,
		signature.recoveryParam,	"hex");
console.log("Recovered	pubKey:",
		pubKeyRecovered.encodeCompressed("hex"));
let	validSig	=	ec.verify(

JavaScript	Crypto	Libraries

182

https://gist.github.com/nakov/1dcbe26988e18f7a4d013b65d8803ffc

		msgHash,	signature,	pubKeyRecovered);
console.log("Signature	valid?",	validSig);

Complete	example:https://gist.github.com/nakov/1dcbe26988e18f7a4d013b65d8803ffc

JavaScript	Crypto	Libraries

183

https://gist.github.com/nakov/1dcbe26988e18f7a4d013b65d8803ffc

Python	Crypto	Libraries
...

Cryptography	in	Python
Hashes,	ECC	and	ECDSA,	eth_keys	Library

ECDSA	in	Python:	Generate	/	Load	Keys
import	eth_keys,	eth_utils,	binascii,	os

#	privKey	=	eth_keys.keys.PrivateKey(os.urandom(32))
privKey	=	eth_keys.keys.PrivateKey(binascii.unhexlify(
				'97ddae0f3a25b92268175400149d65d6887b9cefaf28ea2c078e05cdc15a3c0a'))
pubKey	=	privKey.public_key
pubKeyCompressed	=	'0'	+	str(2	+	int(pubKey)	%	2)	+	str(pubKey)[2:66]
address	=	pubKey.to_checksum_address()
print('Private	key	(64	hex	digits):',	privKey)
print('Public	key	(plain,	128	hex	digits):',	pubKey)
print('Public	key	(compressed):',	pubKeyCompressed)
print('Signer	address:',	address)

ECDSA	in	Python:	Sign	Message
msg	=	b'Message	for	signing'
msgHash	=	eth_utils.keccak(msg)
signature	=	privKey.sign_msg(msg)

print('Msg:',	msg)
print('Msg	hash:',	binascii.hexlify(msgHash))
print('Signature:	[v	=	{0},	r	=	{1},	s	=	{2}]'.format(
		hex(signature.v),	hex(signature.r),	hex(signature.s)))
print('Signature	(130	hex	digits):',	signature)

ECDSA	in	Python:	Verify	Signature
msg	=	b'Message	for	signing'
msgSigner	=	'0xa44f70834a711F0DF388ab016465f2eEb255dEd0'
signature	=	eth_keys.keys.Signature(binascii.unhexlify(
				'6f0156091cbe912f2d5d1215cc3cd81c0963c8839b93af60e0921b61a19c54300c71006dd93f3508c432dac
a21db0095f4b16542782b7986f48a5d0ae3c583d401'))
signerPubKey	=	signature.recover_public_key_from_msg(msg)
print('Signer	public	key	(recovered):',	signerPubKey)
signerAddress	=	signerPubKey.to_checksum_address()
print('Signer	address:',	signerAddress)
print('Signature	valid?:',	signerAddress	==	msgSigner)

Python	Crypto	Libraries

184

Python	Crypto	Libraries

185

C#	Crypto	Libraries
...

Cryptography	in	C#	and	.NET
Bouncy	Castle	.NET	and	Nethereum:Hashes,	ECC	and	ECDSA

.NET	Cryptography	and	Bouncy	Castle	.NET
Cryptography	in	C#	and	.NET	is	based	on:

The	build-in	libraries:	System.Security.Cryptography
The	Bouncy	Castle	.NET–	a	powerful	C#	cryptography	library

http://www.bouncycastle.org/csharp
Nethereum	–	a	simplified	library	for	Ethereum	and	secp256k1

Nethereum	–	https://github.com/Nethereum
The	cryptographic	functionality	is	in	Nethereum.Signer
Nethereum	also	includes	the	Bouncy	Castle	.NET	library

ECDSA	in	C#:	Initialize	the	Application
Install	the	"Nethereum.Signer"	package	from	NuGet

dotnet	add	package	Nethereum.Signer

Import	the	Nethereum	Signer	namespaces:

using	Nethereum.Signer;
using	Nethereum.Signer.Crypto;
using	Nethereum.Util;
using	Nethereum.Hex.HexConvertors.Extensions;

The	Bouncy	Castle	namespaces	will	also	be	available,	e.g.

Org.BouncyCastle.Math.EC.ECPoint	p	=	…;

ECDSA	in	C#:	Generate	/	Load	Keys
//	var	privKey	=	EthECKey.GenerateKey();	//	Random	private	key
var	privKey	=	new	EthECKey("97ddae0f3a25b92268175400149d65d6887b9cefaf28ea2c078e05cdc15a3c0
a");
byte[]	pubKeyCompressed	=	new	ECKey(
		privKey.GetPrivateKeyAsBytes(),	true).GetPubKey(true);
Console.WriteLine("Private	key:	{0}",
		privKey.GetPrivateKey().Substring(4));
Console.WriteLine("Public	key:	{0}",
		privKey.GetPubKey().ToHex().Substring(2));
Console.WriteLine("Public	key	(compressed):	{0}",
		pubKeyCompressed.ToHex());

Complete	example:https://gist.github.com/nakov/f2a579eb9893b29338b11e063d6f80c2

C#	Crypto	Libraries

186

http://www.bouncycastle.org/csharp
https://github.com/Nethereum
https://gist.github.com/nakov/f2a579eb9893b29338b11e063d6f80c2

ECDSA	in	C#:	Sign	Message
string	msg	=	"Message	for	signing";
byte[]	msgBytes	=	Encoding.UTF8.GetBytes(msg);
byte[]	msgHash	=	new	Sha3Keccack().CalculateHash(msgBytes);
var	signature	=	privKey.SignAndCalculateV(msgHash);

Console.WriteLine("Msg:	{0}",	msg);
Console.WriteLine("Msg	hash:	{0}",	msgHash.ToHex());
Console.WriteLine("Signature:	[v	=	{0},	r	=	{1},	s	=	{2}]",
		signature.V[0]	-	27,
		signature.R.ToHex(),
		signature.S.ToHex());

Complete	example:https://gist.github.com/nakov/f2a579eb9893b29338b11e063d6f80c2

ECDSA	in	C#:	Verify	Message
var	pubKeyRecovered	=
		EthECKey.RecoverFromSignature(signature,	msgHash);
Console.WriteLine("Recovered	pubKey:	{0}",
		pubKeyRecovered.GetPubKey().ToHex().Substring(2));

bool	validSig	=	pubKeyRecovered.Verify(msgHash,	signature);
Console.WriteLine("Signature	valid?	{0}",	validSig);

Complete	example:https://gist.github.com/nakov/f2a579eb9893b29338b11e063d6f80c2

C#	Crypto	Libraries

187

https://gist.github.com/nakov/f2a579eb9893b29338b11e063d6f80c2
https://gist.github.com/nakov/f2a579eb9893b29338b11e063d6f80c2

Java	Crypto	Libraries
...

Cryptography	in	Java
JCA,	Bouncy	Castle	and	Web3j:Hashes,	ECC	and	ECDSA

JCA,	Bouncy	Castle	and	Web3j
Cryptography	in	Java	is	based	on	the	Java	Cryptography	Architecture	(JCA)

Typical	Java	style:	lot	of	boilerplate	code
Bouncy	Castle	is	the	leading	Java	cryptography	library

Docs:	https://www.bouncycastle.org/documentation.html
Web3j	–	a	simplified	library	for	Ethereum	and	secp256k1

Web3j	–	https://github.com/web3j
The	cryptographic	functionality	is	in	web3j/crypto

ECDSA	in	Java:	Install	the	Crypto	Libraries
This	Maven	dependency	will	install	the	following	libraries:

org.web3j.crypto–	Ethereum	style	secp256k1	EC	cryptography
org.bouncycastle–	BouncyCastle	crypto	provider	for	Java

<dependency>
		<groupId>org.web3j</groupId>
		<artifactId>crypto</artifactId>
		<version>3.3.1</version>
</dependency>

ECDSA	in	Java:	Initialize	the	Application
import	org.bouncycastle.util.encoders.Hex;
import	org.web3j.crypto.*;
import	java.math.BigInteger;

ECDSA	in	Java:	Generate	/	Load	Keys
//	Generate	random	private	key
//	BigInteger	privKey	=	Keys.createEcKeyPair().getPrivateKey();	

BigInteger	privKey	=	new	BigInteger(
	"97ddae0f3a25b92268175400149d65d6887b9cefaf28ea2c078e05cdc15a3c0a",	16);
BigInteger	pubKey	=	Sign.publicKeyFromPrivate(privKey);
ECKeyPair	keyPair	=	new	ECKeyPair(privKey,	pubKey);

System.out.println("Private	key:	"	+	privKey.toString(16));
System.out.println("Public	key:	"	+	pubKey.toString(16));
System.out.println("Public	key	(compressed):	"	+
		compressPubKey(pubKey));

Java	Crypto	Libraries

188

https://www.bouncycastle.org/documentation.html
https://github.com/web3j

ECDSA	in	Java:	Sign	Message
String	msg	=	"Message	for	signing";
byte[]	msgHash	=	Hash.sha3(msg.getBytes());
Sign.SignatureData	signature	=
		Sign.signMessage(msgHash,	keyPair,	false);

System.out.println("Msg:	"	+	msg);
System.out.println("Msg	hash:	"	+	Hex.toHexString(msgHash));
System.out.printf(
		"Signature:	[v	=	%d,	r	=	%s,	s	=	%s]\n",
		signature.getV()	-	27,
		Hex.toHexString(signature.getR()),
		Hex.toHexString(signature.getS()));

ECDSA	in	Java:	Verify	Signature
BigInteger	pubKeyRecovered	=
		Sign.signedMessageToKey(msg.getBytes(),	signature);
System.out.println("Recovered	public	key:	"	+
		pubKeyRecovered.toString(16));

boolean	validSig	=	pubKey.equals(pubKeyRecovered);
System.out.println("Signature	valid?	"	+	validSig);

Java	Crypto	Libraries

189

Conclusion
...

Conclusion

190

	Welcome
	Preface
	Cryptography - Overview
	Hash Functions
	Crypto Hashes and Collisions
	Hash Functions: Applications
	Secure Hash Algorithms
	Hash Functions - Examples
	Exercises: Calculate Hashes
	Proof-of-Work Hash Functions

	MAC and Key Derivation
	HMAC and Key Derivation
	HMAC Calculation - Examples
	Exercises: Calculate HMAC
	KDF: Deriving Key from Password
	PBKDF2
	Modern Key Derivation Functions
	Scrypt
	Bcrypt
	Linux crypt()
	Argon2
	Password Encryption
	Exercises: Password Encryption

	Secure Random Generators
	Pseudo-Random Numbers - Examples
	Secure Random Generators (CSPRNG)
	Exercises: Pseudo-Random Generator

	Key Exchange and DHKE
	Diffie–Hellman Key Exchange
	DHKE - Examples
	Exercises: DHKE Key Exchange

	Encryption: Symmetric and Asymmetric
	Symmetric Key Ciphers
	Cipher Block Modes
	Popular Symmetric Algorithms
	The AES Cipher - Concepts
	AES Encrypt / Decrypt - Examples
	Ethereum Wallet Encryption
	Exercises: AES Encrypt / Decrypt
	ChaCha20-Poly1305
	Exercises: ChaCha20-Poly1305

	Asymmetric Key Ciphers
	The RSA Cryptosystem - Concepts
	RSA Encrypt / Decrypt - Examples
	Exercises: RSA Encrypt / Decrypt
	Elliptic Curve Cryptography (ECC)
	ECDH Key Exchange
	ECDH Key Exchange - Examples
	Exercises: ECDH Key Exchange
	ECC Encryption / Decryption
	ECIES Hybrid Encryption Scheme
	ECIES Encryption - Example
	Exercises: ECIES Encrypt / Decrypt

	Digital Signatures
	RSA Signatures
	RSA: Sign / Verify - Examples
	Exercises: RSA Sign and Verify
	ECDSA: Elliptic Curve Signatures
	ECDSA: Sign / Verify - Examples
	Exercises: ECDSA Sign and Verify
	EdDSA and Ed25519
	EdDSA: Sign / Verify - Examples
	Exercises: EdDSA Sign and Verify

	Quantum-Safe Cryptography
	Quantum-Safe Signatures - Example

	More Cryptographic Concepts
	Digital Certificates - Example
	TLS - Example
	One-Time Passwords (OTP) - Example

	Crypto Libraries for Developers
	JavaScript Crypto Libraries
	Python Crypto Libraries
	C# Crypto Libraries
	Java Crypto Libraries

	Conclusion

